Implication of polymerase recycling for nascent transcript quantification by live cell imaging.

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yeast Pub Date : 2024-04-01 Epub Date: 2024-02-22 DOI:10.1002/yea.3929
Olivia Kindongo, Guillaume Lieb, Benjamin Skaggs, Yves Dusserre, Vincent Vincenzetti, Serge Pelet
{"title":"Implication of polymerase recycling for nascent transcript quantification by live cell imaging.","authors":"Olivia Kindongo, Guillaume Lieb, Benjamin Skaggs, Yves Dusserre, Vincent Vincenzetti, Serge Pelet","doi":"10.1002/yea.3929","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription enables the production of RNA from a DNA template. Due to the highly dynamic nature of transcription, live-cell imaging methods play a crucial role in measuring the kinetics of this process. For instance, transcriptional bursts have been visualized using fluorescent phage-coat proteins that associate tightly with messenger RNA (mRNA) stem loops formed on nascent transcripts. To convert the signal emanating from a transcription site into meaningful estimates of transcription dynamics, the influence of various parameters on the measured signal must be evaluated. Here, the effect of gene length on the intensity of the transcription site focus was analyzed. Intuitively, a longer gene can support a larger number of transcribing polymerases, thus leading to an increase in the measured signal. However, measurements of transcription induced by hyper-osmotic stress responsive promoters display independence from gene length. A mathematical model of the stress-induced transcription process suggests that the formation of gene loops that favor the recycling of polymerase from the terminator to the promoter can explain the observed behavior. One experimentally validated prediction from this model is that the amount of mRNA produced from a short gene should be higher than for a long one as the density of active polymerase on the short gene will be increased by polymerase recycling. Our data suggest that this recycling contributes significantly to the expression output from a gene and that polymerase recycling is modulated by the promoter identity and the cellular state.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3929","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transcription enables the production of RNA from a DNA template. Due to the highly dynamic nature of transcription, live-cell imaging methods play a crucial role in measuring the kinetics of this process. For instance, transcriptional bursts have been visualized using fluorescent phage-coat proteins that associate tightly with messenger RNA (mRNA) stem loops formed on nascent transcripts. To convert the signal emanating from a transcription site into meaningful estimates of transcription dynamics, the influence of various parameters on the measured signal must be evaluated. Here, the effect of gene length on the intensity of the transcription site focus was analyzed. Intuitively, a longer gene can support a larger number of transcribing polymerases, thus leading to an increase in the measured signal. However, measurements of transcription induced by hyper-osmotic stress responsive promoters display independence from gene length. A mathematical model of the stress-induced transcription process suggests that the formation of gene loops that favor the recycling of polymerase from the terminator to the promoter can explain the observed behavior. One experimentally validated prediction from this model is that the amount of mRNA produced from a short gene should be higher than for a long one as the density of active polymerase on the short gene will be increased by polymerase recycling. Our data suggest that this recycling contributes significantly to the expression output from a gene and that polymerase recycling is modulated by the promoter identity and the cellular state.

聚合酶循环对通过活细胞成像定量新生转录本的影响。
转录是以 DNA 为模板产生 RNA 的过程。由于转录具有高度动态性,活细胞成像方法在测量这一过程的动力学方面发挥着至关重要的作用。例如,利用与新生转录本上形成的信使 RNA(mRNA)茎环紧密结合的荧光噬菌体包被蛋白,可以对转录爆发进行可视化。要将转录位点发出的信号转换成有意义的转录动态估计值,必须评估各种参数对测量信号的影响。在此,我们分析了基因长度对转录位点焦点强度的影响。直观地说,较长的基因可以支持更多的转录聚合酶,从而导致测量信号的增加。然而,超渗透应激反应启动子诱导的转录测量结果显示与基因长度无关。应激诱导转录过程的数学模型表明,有利于聚合酶从终止子循环到启动子的基因环的形成可以解释观察到的行为。该模型的一个实验验证预测是,短基因产生的 mRNA 量应高于长基因,因为短基因上的活性聚合酶密度会因聚合酶循环而增加。我们的数据表明,这种循环对基因的表达输出有很大的贡献,而且聚合酶循环受启动子特性和细胞状态的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信