Curcumin Improves Functional Recovery of Ruptured Tendon by Promoting Tenogenesis via PI3K/Akt Signaling.

IF 5.4 2区 医学 Q1 CELL & TISSUE ENGINEERING
Zhan Zhang, Yiqun Zhang, Han Wang, Baolong Li, Rangjuan Cao, Yan Li, Shusen Cui, Weizhong Zhang
{"title":"Curcumin Improves Functional Recovery of Ruptured Tendon by Promoting Tenogenesis via PI3K/Akt Signaling.","authors":"Zhan Zhang, Yiqun Zhang, Han Wang, Baolong Li, Rangjuan Cao, Yan Li, Shusen Cui, Weizhong Zhang","doi":"10.1093/stcltm/szae007","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In our previous study, we found that local release of curcumin from nanomicelles prevents peritendinous adhesion during Achilles tendon healing. The aim of this study is to further investigate the signaling integrated by curcumin to direct the tenogenetic program of tendon stem cells contributing to tendon healing.</p><p><strong>Methods: </strong>A surgical model of tendon rupture and repair (TRR) was established in rats. Peritendinous adhesion and inflammation, biomechanical function, and expression of β-catenin and epithelial cellular adhesion molecule (EpCAM) were determined. A dataset was analyzed to investigate differentially expressed genes and enriched genes related to the signaling pathways. Tendon stem cells were treated with curcumin to investigate the cellular and molecular events as well as the signaling pathway.</p><p><strong>Results: </strong>In rat TRR model, curcumin treatment resulted in not only significantly decreased peritendinous inflammatory but also improved tendon functional recovery along with significantly increased expressions of EpCAM and β-catenin. Analysis of the dataset indicated that the enriched genes were positively related to differentiation pathways but negatively related to proliferation pathways. In rat tendon stem cells, curcumin treatment inhibited proliferation but promoted differentiation. Curcumin's antioxidative activity was associated with tenogenesis. The upregulated expression of tendon lineage-specific markers was dependent on phosphatidylinositol 3'-kinase/Akt (PI3K/Akt) pathway which could be a potential mechanism of tenogenesis of curcumin treatment.</p><p><strong>Conclusion: </strong>Curcumin could improve tendon functional recovery via promoting tenogenesis in addition to its antioxidant and anti-inflammatory activities. Curcumin induced differentiation of tendon stem/progenitor cell into tenocytes via PI3K/Akt signaling pathway. This finding provided evidence for the application of curcumin to prevent adhesion during tendon repair.</p>","PeriodicalId":21986,"journal":{"name":"Stem Cells Translational Medicine","volume":" ","pages":"477-489"},"PeriodicalIF":5.4000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11092270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cells Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stcltm/szae007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: In our previous study, we found that local release of curcumin from nanomicelles prevents peritendinous adhesion during Achilles tendon healing. The aim of this study is to further investigate the signaling integrated by curcumin to direct the tenogenetic program of tendon stem cells contributing to tendon healing.

Methods: A surgical model of tendon rupture and repair (TRR) was established in rats. Peritendinous adhesion and inflammation, biomechanical function, and expression of β-catenin and epithelial cellular adhesion molecule (EpCAM) were determined. A dataset was analyzed to investigate differentially expressed genes and enriched genes related to the signaling pathways. Tendon stem cells were treated with curcumin to investigate the cellular and molecular events as well as the signaling pathway.

Results: In rat TRR model, curcumin treatment resulted in not only significantly decreased peritendinous inflammatory but also improved tendon functional recovery along with significantly increased expressions of EpCAM and β-catenin. Analysis of the dataset indicated that the enriched genes were positively related to differentiation pathways but negatively related to proliferation pathways. In rat tendon stem cells, curcumin treatment inhibited proliferation but promoted differentiation. Curcumin's antioxidative activity was associated with tenogenesis. The upregulated expression of tendon lineage-specific markers was dependent on phosphatidylinositol 3'-kinase/Akt (PI3K/Akt) pathway which could be a potential mechanism of tenogenesis of curcumin treatment.

Conclusion: Curcumin could improve tendon functional recovery via promoting tenogenesis in addition to its antioxidant and anti-inflammatory activities. Curcumin induced differentiation of tendon stem/progenitor cell into tenocytes via PI3K/Akt signaling pathway. This finding provided evidence for the application of curcumin to prevent adhesion during tendon repair.

姜黄素通过 PI3K/Akt 信号转导促进肌腱腱鞘生成,从而改善断裂肌腱的功能恢复。
研究目的在之前的研究中,我们发现从纳米微孔中局部释放姜黄素可以防止跟腱愈合过程中的腱周粘连。本研究旨在进一步研究姜黄素整合的信号传导,以指导肌腱干细胞的腱生成程序,促进肌腱愈合:方法:在大鼠体内建立肌腱断裂和修复(TRR)手术模型。方法:在大鼠身上建立了肌腱断裂和修复(TRR)手术模型,测定了腱周粘连和炎症、生物力学功能以及β-catenin和上皮细胞粘附分子(EpCAM)的表达。对数据集进行了分析,以研究与信号通路相关的差异表达基因和富集基因。用姜黄素处理肌腱干细胞,研究细胞和分子事件以及信号通路:结果:在大鼠 TRR 模型中,姜黄素处理不仅能显著减少腱周炎症,还能改善肌腱功能恢复,同时显著增加 EpCAM 和 β-catenin 的表达。数据集分析表明,富集基因与分化途径呈正相关,但与增殖途径呈负相关。在大鼠肌腱干细胞中,姜黄素处理抑制了增殖,但促进了分化。姜黄素的抗氧化活性与肌腱的生成有关。腱系特异性标志物的表达上调依赖于磷脂酰肌醇3'-激酶/Akt(PI3K/Akt)通路,这可能是姜黄素治疗腱生成的潜在机制:姜黄素除了具有抗氧化和抗炎活性外,还能通过促进腱鞘生成改善肌腱功能恢复。姜黄素通过PI3K/Akt信号通路诱导肌腱干/祖细胞分化成腱细胞。这一发现为姜黄素在肌腱修复过程中防止粘连的应用提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cells Translational Medicine
Stem Cells Translational Medicine CELL & TISSUE ENGINEERING-
CiteScore
12.90
自引率
3.30%
发文量
140
审稿时长
6-12 weeks
期刊介绍: STEM CELLS Translational Medicine is a monthly, peer-reviewed, largely online, open access journal. STEM CELLS Translational Medicine works to advance the utilization of cells for clinical therapy. By bridging stem cell molecular and biological research and helping speed translations of emerging lab discoveries into clinical trials, STEM CELLS Translational Medicine will help move applications of these critical investigations closer to accepted best patient practices and ultimately improve outcomes. The journal encourages original research articles and concise reviews describing laboratory investigations of stem cells, including their characterization and manipulation, and the translation of their clinical aspects of from the bench to patient care. STEM CELLS Translational Medicine covers all aspects of translational cell studies, including bench research, first-in-human case studies, and relevant clinical trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信