Biodistribution of Radioactively Labeled Splice Modulating Antisense Oligonucleotides After Intracerebroventricular and Intrathecal Injection in Mice.

IF 4 2区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tom Metz, Mick M Welling, Ernst Suidgeest, Esmée Nieuwenhuize, Thomas de Vlaam, Daniel Curtis, Tsinatkeab T Hailu, Louise van der Weerd, Willeke M C van Roon-Mom
{"title":"Biodistribution of Radioactively Labeled Splice Modulating Antisense Oligonucleotides After Intracerebroventricular and Intrathecal Injection in Mice.","authors":"Tom Metz, Mick M Welling, Ernst Suidgeest, Esmée Nieuwenhuize, Thomas de Vlaam, Daniel Curtis, Tsinatkeab T Hailu, Louise van der Weerd, Willeke M C van Roon-Mom","doi":"10.1089/nat.2023.0018","DOIUrl":null,"url":null,"abstract":"<p><p>Antisense oligonucleotides (AONs) are promising therapeutic candidates, especially for neurological diseases. Intracerebroventricular (ICV) injection is the predominant route of administration in mouse studies, while in clinical trials, intrathecal (IT) administration is mostly used. There is little knowledge on the differences in distribution of these injection methods within the same species over time. In this study, we compared the distribution of splice-switching AONs targeting exon 15 of amyloid precursor protein pre-mRNA injected via the ICV and IT route in mice. The AON was labeled with radioactive indium-111 and mice were imaged using single-photon emission computed tomography (SPECT) 0, 4, 24, 48, 72, and 96 h after injection. <i>In vivo</i> SPECT imaging showed <sup>111</sup>In-AON activity diffused throughout the central nervous system (CNS) in the first hours after injection. The <sup>111</sup>In-AON activity in the CNS persisted over the course of 4 days, while signal in the kidneys rapidly decreased. Postmortem counting in different organs and tissues showed very similar distribution of <sup>111</sup>In-AON activity throughout the body, while the signal in the different brain regions was higher with ICV injection. Overall, IT and ICV injection have very similar distribution patterns in the mouse, but ICV injection is much more effective in reaching the brain.</p>","PeriodicalId":19412,"journal":{"name":"Nucleic acid therapeutics","volume":"34 1","pages":"26-34"},"PeriodicalIF":4.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic acid therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/nat.2023.0018","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antisense oligonucleotides (AONs) are promising therapeutic candidates, especially for neurological diseases. Intracerebroventricular (ICV) injection is the predominant route of administration in mouse studies, while in clinical trials, intrathecal (IT) administration is mostly used. There is little knowledge on the differences in distribution of these injection methods within the same species over time. In this study, we compared the distribution of splice-switching AONs targeting exon 15 of amyloid precursor protein pre-mRNA injected via the ICV and IT route in mice. The AON was labeled with radioactive indium-111 and mice were imaged using single-photon emission computed tomography (SPECT) 0, 4, 24, 48, 72, and 96 h after injection. In vivo SPECT imaging showed 111In-AON activity diffused throughout the central nervous system (CNS) in the first hours after injection. The 111In-AON activity in the CNS persisted over the course of 4 days, while signal in the kidneys rapidly decreased. Postmortem counting in different organs and tissues showed very similar distribution of 111In-AON activity throughout the body, while the signal in the different brain regions was higher with ICV injection. Overall, IT and ICV injection have very similar distribution patterns in the mouse, but ICV injection is much more effective in reaching the brain.

放射性标记的剪接调节反义寡核苷酸在小鼠脑室内和鞘内注射后的生物分布。
反义寡核苷酸(AONs)是一种很有前景的候选疗法,尤其适用于治疗神经系统疾病。在小鼠研究中,脑室内注射(ICV)是最主要的给药途径,而在临床试验中,则大多采用鞘内注射(IT)。关于这些注射方法在同一物种内不同时期的分布差异,人们知之甚少。在这项研究中,我们比较了小鼠通过 ICV 和 IT 途径注射的针对淀粉样前体蛋白前核糖核酸第 15 外显子的剪接转换 AON 的分布情况。用放射性铟-111标记AON,注射后0、4、24、48、72和96小时用单光子发射计算机断层扫描(SPECT)对小鼠进行成像。体内 SPECT 成像显示,111In-AON 活性在注射后数小时内扩散到整个中枢神经系统(CNS)。中枢神经系统中的111In-AON活性持续了4天,而肾脏中的信号则迅速下降。不同器官和组织的尸检计数显示,111In-AON活性在全身的分布非常相似,而ICV注射在不同脑区的信号更高。总的来说,IT和ICV注射在小鼠体内的分布模式非常相似,但ICV注射更有效地到达大脑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic acid therapeutics
Nucleic acid therapeutics BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
7.60
自引率
7.50%
发文量
47
审稿时长
>12 weeks
期刊介绍: Nucleic Acid Therapeutics is the leading journal in its field focusing on cutting-edge basic research, therapeutic applications, and drug development using nucleic acids or related compounds to alter gene expression. The Journal examines many new approaches for using nucleic acids as therapeutic agents or in modifying nucleic acids for therapeutic purposes including: oligonucleotides, gene modification, aptamers, RNA nanoparticles, and ribozymes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信