A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Francesco Chidichimo, Maria Rita Basile, Carmela Conidi, Giovanni De Filpo, Rosanna Morelli, Alfredo Cassano
{"title":"A New Approach for Bioremediation of Olive Mill Wastewaters: Combination of Straw Filtration and Nanofiltration.","authors":"Francesco Chidichimo, Maria Rita Basile, Carmela Conidi, Giovanni De Filpo, Rosanna Morelli, Alfredo Cassano","doi":"10.3390/membranes14020038","DOIUrl":null,"url":null,"abstract":"<p><p>A combination of straw filtration and nanofiltration was investigated for the first time as a sustainable approach aimed at valorizing olive mill wastewaters (OMWs) within a circular economy strategy. Ground straw filters with different granulometry (120, 250 and 500 μm) were tested in the first step to clarify the raw wastewater. The 500 μm filter offered the best performance due to a lower exposed surface of the filtering fibers and a shorter filtering time, allowing us to reduce about 70% of the chemical oxygen demand (COD) of the raw wastewater. Three different commercial membranes in a flat-sheet configuration with a molecular weight cut-off (MWCO) in the range 150-500 Da were tested to fractionate the clarified wastewater according to a dead-end configuration. Among the investigated membranes, a polymeric membrane of 500 Da (NFA-12A) exhibited the highest productivity in selected operating conditions (steady-state values of 11.4 L/m<sup>2</sup> h at 20 bar and 24 ± 2 °C). In addition, flux decays for this membrane were lower than the other two tested membranes, indicating a lower propensity to fouling phenomena. Higher rejections towards total polyphenols and total antioxidant activity (TAA) (76.6% and 73.2%, respectively) were also observed for this membrane. Flavanols and hydroxycinnamic acids were retained by more than 99%. The combination of straw filtration and NF with the NFA-12A membrane allowed us to reduce the COD of raw OMWs up to 97.6%. The retentate fraction of this membrane exhibited a TAA of 18.9 ± 0.7 mM Trolox, supporting its propensity for the development of innovative formulations of interest in food and nutraceutical applications.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 2","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14020038","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A combination of straw filtration and nanofiltration was investigated for the first time as a sustainable approach aimed at valorizing olive mill wastewaters (OMWs) within a circular economy strategy. Ground straw filters with different granulometry (120, 250 and 500 μm) were tested in the first step to clarify the raw wastewater. The 500 μm filter offered the best performance due to a lower exposed surface of the filtering fibers and a shorter filtering time, allowing us to reduce about 70% of the chemical oxygen demand (COD) of the raw wastewater. Three different commercial membranes in a flat-sheet configuration with a molecular weight cut-off (MWCO) in the range 150-500 Da were tested to fractionate the clarified wastewater according to a dead-end configuration. Among the investigated membranes, a polymeric membrane of 500 Da (NFA-12A) exhibited the highest productivity in selected operating conditions (steady-state values of 11.4 L/m2 h at 20 bar and 24 ± 2 °C). In addition, flux decays for this membrane were lower than the other two tested membranes, indicating a lower propensity to fouling phenomena. Higher rejections towards total polyphenols and total antioxidant activity (TAA) (76.6% and 73.2%, respectively) were also observed for this membrane. Flavanols and hydroxycinnamic acids were retained by more than 99%. The combination of straw filtration and NF with the NFA-12A membrane allowed us to reduce the COD of raw OMWs up to 97.6%. The retentate fraction of this membrane exhibited a TAA of 18.9 ± 0.7 mM Trolox, supporting its propensity for the development of innovative formulations of interest in food and nutraceutical applications.

橄榄油厂废水生物修复的新方法:秸秆过滤与纳滤的结合。
研究人员首次将秸秆过滤和纳滤结合起来,作为一种可持续的方法,旨在循环经济战略中实现橄榄油厂废水(OMWs)的价值化。第一步对不同粒度(120、250 和 500 μm)的研磨秸秆过滤器进行了测试,以澄清原始废水。500 μm 过滤器的性能最佳,因为其过滤纤维的暴露表面较低,过滤时间较短,可以减少原废水中约 70% 的化学需氧量 (COD)。我们测试了三种不同的平板结构商用膜,它们的截留分子量(MWCO)范围在 150-500 Da 之间,用于根据死端结构对澄清废水进行分馏。在所研究的膜中,分子量为 500 Da 的聚合物膜(NFA-12A)在选定的操作条件下表现出最高的生产率(在 20 bar 和 24 ± 2 °C 条件下,稳态值为 11.4 L/m2 h)。此外,这种膜的通量衰减低于其他两种测试膜,这表明其结垢现象的倾向性较低。还观察到这种膜对总多酚和总抗氧化活性(TAA)的剔除率较高(分别为 76.6% 和 73.2%)。黄烷醇和羟基肉桂酸的保留率超过 99%。将秸秆过滤和 NF 与 NFA-12A 膜结合使用,可将未加工 OMW 的化学需氧量降低 97.6%。该膜的回流部分显示出 18.9 ± 0.7 mM Trolox 的 TAA,支持其在食品和保健品应用中开发创新配方的倾向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信