{"title":"Predicting verbal and performance intelligence quotients from multimodal data in individuals with attention deficit/hyperactivity disorder","authors":"Ningning He, Chao Kou","doi":"10.1002/jdn.10320","DOIUrl":null,"url":null,"abstract":"<p>Despite the importance of understanding how intelligence is ingrained in the function and structure of the brain in some neurological disorders, the alterations of intelligence-associated neurological factors in atypical neurodevelopmental disorders, such as attention deficit/hyperactivity disorder (ADHD), are limited. Therefore, we aimed to explore the relationship between the brain functional and morphological characteristics and the intellectual performance of 139 patients with ADHD. Resting-state functional and T1-weighted structural magnetic resonance imaging (MRI) data and intellectual-performance data of the patients were collected. The MRI data were preprocessed to extract four indicators characterizing the participants' brain features: fractional amplitude of low-frequency fluctuation, regional homogeneity, and gray and white matter volumes. Then, we used a two-layer feature-selection method with support vector regression models based on three kernel functions to predict the verbal and performance intelligent quotients of the patients, along with ten fold cross-validation to evaluate the models' predictive performance. All models showed good performance; the correlation coefficients between the predicted and observed values for each predictive phenotypic variable were >0.41, with statistical significance. The brain features that could best predict the intellectual performance of the patients were concentrated in the superior and inferior frontal gyrus of the prefrontal areas, the angular gyrus and precuneus of the parietal lobe, the inferior and middle temporal gyrus of the temporal lobe, and part of the cerebellar regions. Thus, the voxel-based brain-feature indicators could adequately predict the intellectual performance of patients with ADHD, providing a foundation for future neuroimaging studies of this disorder.</p>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"84 3","pages":"217-226"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10320","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the importance of understanding how intelligence is ingrained in the function and structure of the brain in some neurological disorders, the alterations of intelligence-associated neurological factors in atypical neurodevelopmental disorders, such as attention deficit/hyperactivity disorder (ADHD), are limited. Therefore, we aimed to explore the relationship between the brain functional and morphological characteristics and the intellectual performance of 139 patients with ADHD. Resting-state functional and T1-weighted structural magnetic resonance imaging (MRI) data and intellectual-performance data of the patients were collected. The MRI data were preprocessed to extract four indicators characterizing the participants' brain features: fractional amplitude of low-frequency fluctuation, regional homogeneity, and gray and white matter volumes. Then, we used a two-layer feature-selection method with support vector regression models based on three kernel functions to predict the verbal and performance intelligent quotients of the patients, along with ten fold cross-validation to evaluate the models' predictive performance. All models showed good performance; the correlation coefficients between the predicted and observed values for each predictive phenotypic variable were >0.41, with statistical significance. The brain features that could best predict the intellectual performance of the patients were concentrated in the superior and inferior frontal gyrus of the prefrontal areas, the angular gyrus and precuneus of the parietal lobe, the inferior and middle temporal gyrus of the temporal lobe, and part of the cerebellar regions. Thus, the voxel-based brain-feature indicators could adequately predict the intellectual performance of patients with ADHD, providing a foundation for future neuroimaging studies of this disorder.
期刊介绍:
International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.