Identification of vagal afferent nerve endings in the mouse colon and their spatial relationship with enterochromaffin cells.

IF 3.2 3区 生物学 Q3 CELL BIOLOGY
Cell and Tissue Research Pub Date : 2024-06-01 Epub Date: 2024-02-22 DOI:10.1007/s00441-024-03879-6
Nick J Spencer, Melinda A Kyloh, Lee Travis, Timothy J Hibberd
{"title":"Identification of vagal afferent nerve endings in the mouse colon and their spatial relationship with enterochromaffin cells.","authors":"Nick J Spencer, Melinda A Kyloh, Lee Travis, Timothy J Hibberd","doi":"10.1007/s00441-024-03879-6","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how the gut communicates with the brain, via sensory nerves, is of significant interest to medical science. Enteroendocrine cells (EEC) that line the mucosa of the gastrointestinal tract release neurochemicals, including the largest quantity of 5-hydroxytryptamine (5-HT). How the release of substances, like 5-HT, from enterochromaffin (EC) cells activates vagal afferent nerve endings is unresolved. We performed anterograde labelling from nodose ganglia in vivo and identified vagal afferent axons and nerve endings in the mucosa of whole-mount full-length preparations of mouse colon. We then determined the spatial relationship between mucosal-projecting vagal afferent nerve endings and EC cells in situ using 3D imaging. The mean distances between vagal afferent nerve endings in the mucosa, or nearest varicosities along vagal afferent axon branches, and the nearest EC cell were 29.6 ± 19.2 μm (n = 107, N = 6) and 25.7 ± 15.2 μm (n = 119, N = 6), respectively. No vagal afferent endings made close contacts with EC cells. The distances between EC cells and vagal afferent endings are many hundreds of times greater than known distances between pre- and post-synaptic membranes (typically 10-20 nm) that underlie synaptic transmission in vertebrates. The absence of any close physical contacts between 5-HT-containing EC cells and vagal afferent nerve endings in the mucosa leads to the inescapable conclusion that the mechanism by which 5-HT release from ECs in the colonic mucosa occurs in a paracrine fashion, to activate vagal afferents.</p>","PeriodicalId":9712,"journal":{"name":"Cell and Tissue Research","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell and Tissue Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00441-024-03879-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding how the gut communicates with the brain, via sensory nerves, is of significant interest to medical science. Enteroendocrine cells (EEC) that line the mucosa of the gastrointestinal tract release neurochemicals, including the largest quantity of 5-hydroxytryptamine (5-HT). How the release of substances, like 5-HT, from enterochromaffin (EC) cells activates vagal afferent nerve endings is unresolved. We performed anterograde labelling from nodose ganglia in vivo and identified vagal afferent axons and nerve endings in the mucosa of whole-mount full-length preparations of mouse colon. We then determined the spatial relationship between mucosal-projecting vagal afferent nerve endings and EC cells in situ using 3D imaging. The mean distances between vagal afferent nerve endings in the mucosa, or nearest varicosities along vagal afferent axon branches, and the nearest EC cell were 29.6 ± 19.2 μm (n = 107, N = 6) and 25.7 ± 15.2 μm (n = 119, N = 6), respectively. No vagal afferent endings made close contacts with EC cells. The distances between EC cells and vagal afferent endings are many hundreds of times greater than known distances between pre- and post-synaptic membranes (typically 10-20 nm) that underlie synaptic transmission in vertebrates. The absence of any close physical contacts between 5-HT-containing EC cells and vagal afferent nerve endings in the mucosa leads to the inescapable conclusion that the mechanism by which 5-HT release from ECs in the colonic mucosa occurs in a paracrine fashion, to activate vagal afferents.

Abstract Image

鉴定小鼠结肠中的迷走传入神经末梢及其与肠粘膜细胞的空间关系。
了解肠道如何通过感觉神经与大脑进行交流是医学界的一大兴趣所在。胃肠道粘膜上的肠内分泌细胞(EEC)会释放神经化学物质,包括最大量的 5-羟色胺(5-HT)。肠石蜡(EC)细胞释放的 5-HT 等物质如何激活迷走神经传入神经末梢的问题尚未解决。我们在体内对结节神经节进行了前向标记,并在小鼠结肠全长制备的粘膜上确定了迷走神经传入轴突和神经末梢。然后,我们利用三维成像技术确定了粘膜投射的迷走神经传入神经末梢与原位EC细胞之间的空间关系。粘膜中的迷走传入神经末梢或沿迷走传入轴突分支的最近变节与最近的EC细胞之间的平均距离分别为29.6 ± 19.2 μm(n = 107,N = 6)和25.7 ± 15.2 μm(n = 119,N = 6)。没有迷走神经传入末梢与EC细胞密切接触。迷走神经细胞与迷走神经传入末梢之间的距离比已知的脊椎动物突触传递的突触前后膜之间的距离(通常为 10-20 nm)大数百倍。粘膜中含有 5-HT 的 EC 细胞与迷走神经传入神经末梢之间没有任何密切的物理接触,这就导致了一个不可避免的结论,即结肠粘膜 EC 释放 5-HT 的机制是以旁分泌方式激活迷走神经传入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell and Tissue Research
Cell and Tissue Research 生物-细胞生物学
CiteScore
7.00
自引率
2.80%
发文量
142
审稿时长
1 months
期刊介绍: The journal publishes regular articles and reviews in the areas of molecular, cell, and supracellular biology. In particular, the journal intends to provide a forum for publishing data that analyze the supracellular, integrative actions of gene products and their impact on the formation of tissue structure and function. Submission of papers with an emphasis on structure-function relationships as revealed by recombinant molecular technologies is especially encouraged. Areas of research with a long-standing tradition of publishing in Cell & Tissue Research include: - neurobiology - neuroendocrinology - endocrinology - reproductive biology - skeletal and immune systems - development - stem cells - muscle biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信