Yue Huang, Michael Shane Woolf, Chun-Chi Wang, Sami M Naser, Aaron M Wheeler, William R Mylott, Eric Ma, Anton I Rosenbaum
{"title":"Comprehensive performance evaluation of ligand-binding assay-LC-MS/MS method for co-dosed monoclonal anti-SARS-CoV-2 antibodies (AZD7442).","authors":"Yue Huang, Michael Shane Woolf, Chun-Chi Wang, Sami M Naser, Aaron M Wheeler, William R Mylott, Eric Ma, Anton I Rosenbaum","doi":"10.4155/bio-2023-0225","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aims:</b> AZD7442 is a combination SARS-CoV-2 therapy comprising two co-dosed monoclonal antibodies. <b>Materials & methods:</b> The authors validated a hybrid ligand-binding assay-LC-MS/MS method for pharmacokinetic assessment of AZD7442 in human serum with nominal concentration range of each analyte of 0.300-30.0 μg/ml. <b>Results:</b> Validation results met current regulatory acceptance criteria. The validated method supported three clinical trials that spanned more than 17 months and ≥720 analytical runs (∼30,000 samples and ∼3000 incurred sample reanalyses per analyte). The data generated supported multiple health authority interactions, across the globe. AZD7442 (EVUSHELD) was approved in 12 countries for pre-exposure prophylaxis of COVID-19. <b>Conclusion:</b> The results reported here demonstrate the robust, high-throughput capability of the hybrid ligand-binding assay-LC-MS/MS approach being employed to support-next generation versions of EVUSHELD, AZD3152.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4155/bio-2023-0225","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: AZD7442 is a combination SARS-CoV-2 therapy comprising two co-dosed monoclonal antibodies. Materials & methods: The authors validated a hybrid ligand-binding assay-LC-MS/MS method for pharmacokinetic assessment of AZD7442 in human serum with nominal concentration range of each analyte of 0.300-30.0 μg/ml. Results: Validation results met current regulatory acceptance criteria. The validated method supported three clinical trials that spanned more than 17 months and ≥720 analytical runs (∼30,000 samples and ∼3000 incurred sample reanalyses per analyte). The data generated supported multiple health authority interactions, across the globe. AZD7442 (EVUSHELD) was approved in 12 countries for pre-exposure prophylaxis of COVID-19. Conclusion: The results reported here demonstrate the robust, high-throughput capability of the hybrid ligand-binding assay-LC-MS/MS approach being employed to support-next generation versions of EVUSHELD, AZD3152.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.