{"title":"LncRNA HOTAIR accelerates free fatty acid-induced inflammatory response in HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA","authors":"Bo Guo, Shengzhe Yan, Lei Zhai, Yanzhen Cheng","doi":"10.1007/s10616-023-00614-x","DOIUrl":null,"url":null,"abstract":"<p>LncRNA HOTAIR has been reported to be associated with metabolic diseases of the liver. However, the effect of HOTAIR on non-alcoholic fatty liver disease (NAFLD) inflammation and its potential mechanism have not been reported. Genes and proteins expression were detected by qRT-PCR and Western blot respectively. The level of inflammatory cytokines was assessed by ELISA. HepG2 cell viability was detected by MTT assay. TG level and lipid accumulation were measured by Assay Kit and Oil red O staining, respectively. Direct binding relationship between HOTAIR and Serine/arginine splicing factor 1 (SRSF1), SRSF1 and MLX interacting protein like (MLXIPL) were confirmed by RNA-pull down and RIP assay. HOTAIR was highly expressed in free fatty acids (FFA)-treated HepG2 cells. HOTAIR knockdown alleviated FFA-induced inflammation of HepG2 cells. Then further analysis showed that HOTAIR and SRSF1 had a mutual binding relationship, and HOTAIR maintained MLXIPL mRNA stability via recruiting SRSF1 in HepG2 cells. Moreover, the inhibitory effect of HOTAIR knockdown on FFA-induced inflammation in HepG2 cells was reversed by MLXIPL overexpression. HOTAIR accelerates inflammation of FFA-induced HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA, which will help to find new effective strategies for NAFLD therapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00614-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
LncRNA HOTAIR has been reported to be associated with metabolic diseases of the liver. However, the effect of HOTAIR on non-alcoholic fatty liver disease (NAFLD) inflammation and its potential mechanism have not been reported. Genes and proteins expression were detected by qRT-PCR and Western blot respectively. The level of inflammatory cytokines was assessed by ELISA. HepG2 cell viability was detected by MTT assay. TG level and lipid accumulation were measured by Assay Kit and Oil red O staining, respectively. Direct binding relationship between HOTAIR and Serine/arginine splicing factor 1 (SRSF1), SRSF1 and MLX interacting protein like (MLXIPL) were confirmed by RNA-pull down and RIP assay. HOTAIR was highly expressed in free fatty acids (FFA)-treated HepG2 cells. HOTAIR knockdown alleviated FFA-induced inflammation of HepG2 cells. Then further analysis showed that HOTAIR and SRSF1 had a mutual binding relationship, and HOTAIR maintained MLXIPL mRNA stability via recruiting SRSF1 in HepG2 cells. Moreover, the inhibitory effect of HOTAIR knockdown on FFA-induced inflammation in HepG2 cells was reversed by MLXIPL overexpression. HOTAIR accelerates inflammation of FFA-induced HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA, which will help to find new effective strategies for NAFLD therapy.