Martian microbes research and lessons learnt for forensic science

IF 1.9 4区 医学 Q2 MEDICINE, LEGAL
Max Coleman
{"title":"Martian microbes research and lessons learnt for forensic science","authors":"Max Coleman","doi":"10.1016/j.scijus.2024.02.005","DOIUrl":null,"url":null,"abstract":"<div><p>A new method for looking for life outside the Earth is used as an example to demonstrate how ways of presenting complex scientific concepts to the general public, used in planetary science, could be used in forensic science. The work led to a pared down, practical definition of detectable Life for planetary exploration, <em>An organised system capable of processing energy sources to its advantage.</em> For nearly three quarters of Earth’s history the only lifeforms were microbes, which are the target for looking for extraterrestrial life. Microbes are microscopic and may be sparsely distributed, but their metabolic products can form large, durable rocks, much easier to find and which may contain the organisms or their remains.</p><p>There are similar challenges in presenting astrobiological and forensic science. Both may have to deal with very large or very small numbers which are not immediately comprehensible but can be understood by analogy. To increase the impact on the listener or reader, dramatic analogues are valuable, for example, referring to the mineralised microbial metabolic products as, “fossilised breath of bacteria” demands the audience's attention and engages them before more detailed explanations are given. The power of practical experiments or demonstrations is most important to reinforce what might otherwise be a fairly abstract concept. Surprisingly, most of these approaches can be made to work equally well in both spoken and written forms as well as in both sciences.</p></div>","PeriodicalId":49565,"journal":{"name":"Science & Justice","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Justice","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1355030624000108","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

A new method for looking for life outside the Earth is used as an example to demonstrate how ways of presenting complex scientific concepts to the general public, used in planetary science, could be used in forensic science. The work led to a pared down, practical definition of detectable Life for planetary exploration, An organised system capable of processing energy sources to its advantage. For nearly three quarters of Earth’s history the only lifeforms were microbes, which are the target for looking for extraterrestrial life. Microbes are microscopic and may be sparsely distributed, but their metabolic products can form large, durable rocks, much easier to find and which may contain the organisms or their remains.

There are similar challenges in presenting astrobiological and forensic science. Both may have to deal with very large or very small numbers which are not immediately comprehensible but can be understood by analogy. To increase the impact on the listener or reader, dramatic analogues are valuable, for example, referring to the mineralised microbial metabolic products as, “fossilised breath of bacteria” demands the audience's attention and engages them before more detailed explanations are given. The power of practical experiments or demonstrations is most important to reinforce what might otherwise be a fairly abstract concept. Surprisingly, most of these approaches can be made to work equally well in both spoken and written forms as well as in both sciences.

火星微生物研究和法医学的经验教训
以一种寻找地球外生命的新方法为例,说明行星科学中向公众介绍复杂科学概念的方法可如何用于法医学。这项工作为行星探索带来了一个简洁实用的可探测生命定义,即一个有组织的系统,能够处理能源以发挥其优势。在地球近四分之三的历史中,唯一的生命形式是微生物,而这正是寻找地外生命的目标。微生物是微小的,可能分布稀少,但它们的代谢产物可以形成大而耐用的岩石,更容易找到,其中可能含有生物体或其残骸。在介绍天体生物学和法医学时也会遇到类似的挑战。两者都可能需要处理非常大或非常小的数字,这些数字无法立即理解,但可以通过类比来理解。例如,将矿化的微生物代谢产物称为 "细菌的呼吸化石",会吸引听众的注意力,并在进行更详细的解释之前吸引他们。实际实验或演示的力量对于强化原本可能相当抽象的概念最为重要。令人惊讶的是,这些方法中的大多数都能以口语和书面形式以及在两门科学中同样有效地发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science & Justice
Science & Justice 医学-病理学
CiteScore
4.20
自引率
15.80%
发文量
98
审稿时长
81 days
期刊介绍: Science & Justice provides a forum to promote communication and publication of original articles, reviews and correspondence on subjects that spark debates within the Forensic Science Community and the criminal justice sector. The journal provides a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. Science & Justice is published six times a year, and will be of interest primarily to practising forensic scientists and their colleagues in related fields. It is chiefly concerned with the publication of formal scientific papers, in keeping with its international learned status, but will not accept any article describing experimentation on animals which does not meet strict ethical standards. Promote communication and informed debate within the Forensic Science Community and the criminal justice sector. To promote the publication of learned and original research findings from all areas of the forensic sciences and by so doing to advance the profession. To promote the publication of case based material by way of case reviews. To promote the publication of conference proceedings which are of interest to the forensic science community. To provide a medium whereby all aspects of applying science to legal proceedings can be debated and progressed. To appeal to all those with an interest in the forensic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信