Ze Chai , Bo Peng , Xukai Ren , Kaiyuan Hong , Xiaoqi Chen
{"title":"The microstructural evolution and relaxation strengthening for nano-grained Ni upon low-temperature annealing","authors":"Ze Chai , Bo Peng , Xukai Ren , Kaiyuan Hong , Xiaoqi Chen","doi":"10.1016/j.nanoms.2023.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>The microstructural evolution and relaxation strengthening of nano-grained Ni annealed at a temperature range of 493–553 K were studied by <em>in situ</em> X-ray diffraction technique, transmission electron microscopy, and microhardness evaluation. Upon low-temperature annealing, the rather limited variations of anisotropic grain size and root-mean-square strain, conforming to an exponential relaxation model, yield a consistent activation energy of approximately 0.5 eV, which corresponds to the localized, rapid diffusion of excess vacancies on nonequilibrium surfaces/interfaces and/or defective lattice configurations. Microstructure examinations confirm the grain boundary ordering and excess defect reduction. The relaxation-induced strength enhancement can be attributed to the linear strengthening in the regime of small elastic lattice strains. This study provides an in-depth understanding of low-temperature nanostructural relaxation and its relation to strengthening.</div></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 6","pages":"Pages 726-734"},"PeriodicalIF":9.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000934","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructural evolution and relaxation strengthening of nano-grained Ni annealed at a temperature range of 493–553 K were studied by in situ X-ray diffraction technique, transmission electron microscopy, and microhardness evaluation. Upon low-temperature annealing, the rather limited variations of anisotropic grain size and root-mean-square strain, conforming to an exponential relaxation model, yield a consistent activation energy of approximately 0.5 eV, which corresponds to the localized, rapid diffusion of excess vacancies on nonequilibrium surfaces/interfaces and/or defective lattice configurations. Microstructure examinations confirm the grain boundary ordering and excess defect reduction. The relaxation-induced strength enhancement can be attributed to the linear strengthening in the regime of small elastic lattice strains. This study provides an in-depth understanding of low-temperature nanostructural relaxation and its relation to strengthening.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.