DopedVS2as a high-performance electrode material for rechargeableMg-ion batteries

IF 4.4 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Yingfang Li, Kunlun Wu, Haoran Luo, Meng Li, Lei Wang, Kuan Sun, Yujie Zheng
{"title":"DopedVS2as a high-performance electrode material for rechargeableMg-ion batteries","authors":"Yingfang Li, Kunlun Wu, Haoran Luo, Meng Li, Lei Wang, Kuan Sun, Yujie Zheng","doi":"10.1103/physrevapplied.21.024038","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) vanadium disulfide (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>) can serve as a universal host for reversible intercalation and deintercalation of alkali and alkaline earth metal ions. However, its practical application in rechargeable metal-ion batteries is limited by its low energy density (559 Wh <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mrow><mi mathvariant=\"normal\">g</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>). Herein, the effects of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> doping and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mo>,</mo><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> codoping on the electrochemical performance of 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math> used as anode for magnesium-ion batteries (MIBs) are investigated by first-principles calculations. Values of both the energy density and specific capacity increase with increasing <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>-doping concentration, and those of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>VSO</mi></math> are 2.17 times and 1.16 times higher than those of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>, respectively. However, due to the strong bond between <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Mg</mi></math>, the diffusion barrier of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Mg</mi></math> atoms on 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>VSO</mi></math> is relatively high (1.02 eV). Further introduction of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VSO</mi><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mrow><mn>0.25</mn></mrow></msub></math>) can reduce the diffusion barrier of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Mg</mi></math> atoms (0.80 eV) to a level comparable to that of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>. Meanwhile, the values of energy density and specific capacity of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VSO</mi><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mrow><mn>0.25</mn></mrow></msub></math> are 1.53 times and 1.17 times those of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>. Our results suggest that <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> doping and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mo>,</mo><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> codoping of 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math> are effective strategies to improve the overall performance of MIBs and it should be possible to generalize such doping strategies to other rechargeable MIBs based on 2D transition metal dichalcogenides.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"5 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.21.024038","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) vanadium disulfide (VS2) can serve as a universal host for reversible intercalation and deintercalation of alkali and alkaline earth metal ions. However, its practical application in rechargeable metal-ion batteries is limited by its low energy density (559 Wh g1). Herein, the effects of O doping and C,O codoping on the electrochemical performance of 2D VS2 used as anode for magnesium-ion batteries (MIBs) are investigated by first-principles calculations. Values of both the energy density and specific capacity increase with increasing O-doping concentration, and those of VSO are 2.17 times and 1.16 times higher than those of VS2, respectively. However, due to the strong bond between O and Mg, the diffusion barrier of Mg atoms on 2D VSO is relatively high (1.02 eV). Further introduction of C (VSO0.75C0.25) can reduce the diffusion barrier of Mg atoms (0.80 eV) to a level comparable to that of VS2. Meanwhile, the values of energy density and specific capacity of VSO0.75C0.25 are 1.53 times and 1.17 times those of VS2. Our results suggest that O doping and C,O codoping of 2D VS2 are effective strategies to improve the overall performance of MIBs and it should be possible to generalize such doping strategies to other rechargeable MIBs based on 2D transition metal dichalcogenides.

Abstract Image

掺杂 VS2 作为可充电镁离子电池的高性能电极材料
二维二硫化钒(VS2)可以作为碱金属和碱土金属离子可逆插层和脱插层的通用宿主。然而,由于其能量密度较低(559 Wh g-1),其在可充电金属离子电池中的实际应用受到了限制。本文通过第一原理计算研究了 O 掺杂和 C,O 共掺对用作镁离子电池阳极的二维 VS2 电化学性能的影响。能量密度和比容量值都随着 O 掺杂浓度的增加而增加,VSO 的能量密度和比容量值分别是 VS2 的 2.17 倍和 1.16 倍。然而,由于 O 和镁之间的键很强,镁原子在二维 VSO 上的扩散势垒相对较高(1.02 eV)。进一步引入 C(VSO0.75C0.25)可将镁原子的扩散势垒(0.80 eV)降低到与 VS2 相当的水平。同时,VSO0.75C0.25 的能量密度和比容量值分别是 VS2 的 1.53 倍和 1.17 倍。我们的研究结果表明,二维 VS2 的 O 掺杂和 C,O 共掺杂是提高 MIB 整体性能的有效策略,这种掺杂策略应该可以推广到其他基于二维过渡金属二钙化物的可充电 MIB 上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信