{"title":"DopedVS2as a high-performance electrode material for rechargeableMg-ion batteries","authors":"Yingfang Li, Kunlun Wu, Haoran Luo, Meng Li, Lei Wang, Kuan Sun, Yujie Zheng","doi":"10.1103/physrevapplied.21.024038","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) vanadium disulfide (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>) can serve as a universal host for reversible intercalation and deintercalation of alkali and alkaline earth metal ions. However, its practical application in rechargeable metal-ion batteries is limited by its low energy density (559 Wh <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mrow><mi mathvariant=\"normal\">g</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math>). Herein, the effects of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> doping and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mo>,</mo><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> codoping on the electrochemical performance of 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math> used as anode for magnesium-ion batteries (MIBs) are investigated by first-principles calculations. Values of both the energy density and specific capacity increase with increasing <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math>-doping concentration, and those of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>VSO</mi></math> are 2.17 times and 1.16 times higher than those of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>, respectively. However, due to the strong bond between <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Mg</mi></math>, the diffusion barrier of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Mg</mi></math> atoms on 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>VSO</mi></math> is relatively high (1.02 eV). Further introduction of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow></math> (<math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VSO</mi><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mrow><mn>0.25</mn></mrow></msub></math>) can reduce the diffusion barrier of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>Mg</mi></math> atoms (0.80 eV) to a level comparable to that of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>. Meanwhile, the values of energy density and specific capacity of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VSO</mi><mrow><mn>0.75</mn></mrow></msub><msub><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mrow><mn>0.25</mn></mrow></msub></math> are 1.53 times and 1.17 times those of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math>. Our results suggest that <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> doping and <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mrow><mi mathvariant=\"normal\">C</mi></mrow></mrow><mo>,</mo><mrow><mrow><mi mathvariant=\"normal\">O</mi></mrow></mrow></math> codoping of 2D <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>VS</mi><mn>2</mn></msub></math> are effective strategies to improve the overall performance of MIBs and it should be possible to generalize such doping strategies to other rechargeable MIBs based on 2D transition metal dichalcogenides.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"5 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.21.024038","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) vanadium disulfide () can serve as a universal host for reversible intercalation and deintercalation of alkali and alkaline earth metal ions. However, its practical application in rechargeable metal-ion batteries is limited by its low energy density (559 Wh ). Herein, the effects of doping and codoping on the electrochemical performance of 2D used as anode for magnesium-ion batteries (MIBs) are investigated by first-principles calculations. Values of both the energy density and specific capacity increase with increasing -doping concentration, and those of are 2.17 times and 1.16 times higher than those of , respectively. However, due to the strong bond between and , the diffusion barrier of atoms on 2D is relatively high (1.02 eV). Further introduction of () can reduce the diffusion barrier of atoms (0.80 eV) to a level comparable to that of . Meanwhile, the values of energy density and specific capacity of are 1.53 times and 1.17 times those of . Our results suggest that doping and codoping of 2D are effective strategies to improve the overall performance of MIBs and it should be possible to generalize such doping strategies to other rechargeable MIBs based on 2D transition metal dichalcogenides.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.