Why it does not work? Metaheuristic task allocation approaches in Fog-enabled Internet of Drones

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Saeed Javanmardi , Georgia Sakellari , Mohammad Shojafar , Antonio Caruso
{"title":"Why it does not work? Metaheuristic task allocation approaches in Fog-enabled Internet of Drones","authors":"Saeed Javanmardi ,&nbsp;Georgia Sakellari ,&nbsp;Mohammad Shojafar ,&nbsp;Antonio Caruso","doi":"10.1016/j.simpat.2024.102913","DOIUrl":null,"url":null,"abstract":"<div><p>Several scenarios that use the Internet of Drones (IoD) networks require a Fog paradigm, where the Fog devices, provide time-sensitive functionality such as task allocation, scheduling, and resource optimization. The problem of efficient task allocation/scheduling is critical for optimizing Fog-enabled Internet of Drones performance. In recent years, many articles have employed meta-heuristic approaches for task scheduling/allocation in Fog-enabled IoT-based scenarios, focusing on network usage and delay, but neglecting execution time. While promising in the academic area, metaheuristic have many limitations in real-time environments due to their high execution time, resource-intensive nature, increased time complexity, and inherent uncertainty in achieving optimal solutions, as supported by empirical studies, case studies, and benchmarking data. We propose a task allocation method named F-DTA that is used as the fitness function of two metaheuristic approaches: Particle Swarm Optimization (PSO) and The Krill Herd Algorithm (KHA). We compare our proposed method by simulation using the iFogSim2 simulator, keeping all the settings the same for a fair evaluation and only focus on the execution time. The results confirm its superior performance in execution time, compared to the metaheuristics.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569190X24000273/pdfft?md5=4a684cbf1f3922d096dcb3ab0bd3aefb&pid=1-s2.0-S1569190X24000273-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24000273","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Several scenarios that use the Internet of Drones (IoD) networks require a Fog paradigm, where the Fog devices, provide time-sensitive functionality such as task allocation, scheduling, and resource optimization. The problem of efficient task allocation/scheduling is critical for optimizing Fog-enabled Internet of Drones performance. In recent years, many articles have employed meta-heuristic approaches for task scheduling/allocation in Fog-enabled IoT-based scenarios, focusing on network usage and delay, but neglecting execution time. While promising in the academic area, metaheuristic have many limitations in real-time environments due to their high execution time, resource-intensive nature, increased time complexity, and inherent uncertainty in achieving optimal solutions, as supported by empirical studies, case studies, and benchmarking data. We propose a task allocation method named F-DTA that is used as the fitness function of two metaheuristic approaches: Particle Swarm Optimization (PSO) and The Krill Herd Algorithm (KHA). We compare our proposed method by simulation using the iFogSim2 simulator, keeping all the settings the same for a fair evaluation and only focus on the execution time. The results confirm its superior performance in execution time, compared to the metaheuristics.

为什么行不通?雾化无人机互联网中的元搜索任务分配方法
使用无人机互联网(IoD)网络的若干场景需要使用雾范例,其中雾设备提供任务分配、调度和资源优化等时间敏感功能。高效的任务分配/调度问题对于优化雾支持的无人机互联网性能至关重要。近年来,许多文章采用元启发式方法在基于雾的物联网场景中进行任务调度/分配,重点关注网络使用和延迟,但忽略了执行时间。虽然元启发式在学术领域大有可为,但由于其执行时间长、资源密集、时间复杂性增加以及实现最优解的内在不确定性,在实时环境中存在许多局限性,这一点已得到实证研究、案例研究和基准数据的支持。我们提出了一种名为 F-DTA 的任务分配方法,它被用作两种元启发式方法的适配函数:我们提出了一种名为 F-DTA 的任务分配方法,该方法被用作两种元启发式方法的适配函数:粒子群优化(PSO)和磷虾群算法(KHA)。我们使用 iFogSim2 模拟器对我们提出的方法进行了模拟比较,为进行公平评估,所有设置保持不变,只关注执行时间。结果证实,与元启发式算法相比,我们的方法在执行时间方面表现更优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信