Multistructured hydrogel promotes nerve regeneration

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ning Zhu, Yaping Zhuang, Wanju Sun, Juan Wang, Fan Wang, Xiaoyu Han, Zeyu Han, Ming Ni, Wenguo Cui, Yan Qiu
{"title":"Multistructured hydrogel promotes nerve regeneration","authors":"Ning Zhu, Yaping Zhuang, Wanju Sun, Juan Wang, Fan Wang, Xiaoyu Han, Zeyu Han, Ming Ni, Wenguo Cui, Yan Qiu","doi":"10.1016/j.mtadv.2024.100465","DOIUrl":null,"url":null,"abstract":"Hydrogels have emerged as promising biomaterials for nerve regeneration due to their adjustable properties, structural resemblance to the extracellular matrix, and ability to promote cell adhesion and proliferation. This comprehensive review discusses the advantages, challenges, and future directions of various functional hydrogels. Advanced technologies for fabricating Multistructured hydrogel, including injectable hydrogels, hydrogel microspheres, fibrous hydrogels, 3D printing hydrogels, nanogels, stem cell-loaded hydrogels, electrical hydrogels, ultrasound hydrogels, and magnetic hydrogels, have been developed and studied for nerve regeneration. These technologies demonstrate the versatility of hydrogels in neural tissue repair. However, challenges such as biocompatibility, degradation rates, and scaffold design need to be addressed. Interdisciplinary research is necessary to develop innovative hydrogel systems that overcome these challenges and realize the potential of hydrogels for nerve regeneration. This review provides valuable insights into advanced hydrogel technologies and highlights their potential in regenerative medicine, particularly in neural regeneration. Researchers can use this knowledge to refine therapeutic approaches involving hydrogels for enhancing nerve regeneration.","PeriodicalId":48495,"journal":{"name":"Materials Today Advances","volume":"35 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtadv.2024.100465","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels have emerged as promising biomaterials for nerve regeneration due to their adjustable properties, structural resemblance to the extracellular matrix, and ability to promote cell adhesion and proliferation. This comprehensive review discusses the advantages, challenges, and future directions of various functional hydrogels. Advanced technologies for fabricating Multistructured hydrogel, including injectable hydrogels, hydrogel microspheres, fibrous hydrogels, 3D printing hydrogels, nanogels, stem cell-loaded hydrogels, electrical hydrogels, ultrasound hydrogels, and magnetic hydrogels, have been developed and studied for nerve regeneration. These technologies demonstrate the versatility of hydrogels in neural tissue repair. However, challenges such as biocompatibility, degradation rates, and scaffold design need to be addressed. Interdisciplinary research is necessary to develop innovative hydrogel systems that overcome these challenges and realize the potential of hydrogels for nerve regeneration. This review provides valuable insights into advanced hydrogel technologies and highlights their potential in regenerative medicine, particularly in neural regeneration. Researchers can use this knowledge to refine therapeutic approaches involving hydrogels for enhancing nerve regeneration.
多结构水凝胶促进神经再生
水凝胶具有可调节性、与细胞外基质结构相似以及促进细胞粘附和增殖的能力,因此已成为神经再生领域前景广阔的生物材料。本综述探讨了各种功能性水凝胶的优势、挑战和未来发展方向。目前已开发并研究了制造多结构水凝胶的先进技术,包括可注射水凝胶、水凝胶微球、纤维状水凝胶、三维打印水凝胶、纳米凝胶、干细胞负载水凝胶、电性水凝胶、超声波水凝胶和磁性水凝胶,用于神经再生。这些技术证明了水凝胶在神经组织修复方面的多功能性。然而,生物相容性、降解率和支架设计等挑战仍有待解决。有必要开展跨学科研究,以开发创新的水凝胶系统,克服这些挑战,实现水凝胶在神经再生方面的潜力。本综述提供了有关先进水凝胶技术的宝贵见解,并强调了它们在再生医学,尤其是神经再生方面的潜力。研究人员可以利用这些知识完善涉及水凝胶的治疗方法,以促进神经再生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Advances
Materials Today Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.30
自引率
2.00%
发文量
116
审稿时长
32 days
期刊介绍: Materials Today Advances is a multi-disciplinary, open access journal that aims to connect different communities within materials science. It covers all aspects of materials science and related disciplines, including fundamental and applied research. The focus is on studies with broad impact that can cross traditional subject boundaries. The journal welcomes the submissions of articles at the forefront of materials science, advancing the field. It is part of the Materials Today family and offers authors rigorous peer review, rapid decisions, and high visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信