Magneto-responsive liquid crystalline elastomer nanocomposites

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yang Yang , Shuai Zhang , Yan Ji , Yen Wei , Jianlong Wang , Xiangming He
{"title":"Magneto-responsive liquid crystalline elastomer nanocomposites","authors":"Yang Yang ,&nbsp;Shuai Zhang ,&nbsp;Yan Ji ,&nbsp;Yen Wei ,&nbsp;Jianlong Wang ,&nbsp;Xiangming He","doi":"10.1016/j.mattod.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>As ideal and smart stimuli-responsive materials for soft actuators, artificial muscles, etc., liquid crystalline elastomers (LCEs) can respond to external stimuli, including heat, light, electricity, magnetism, humidity, etc., and make corresponding deformations. Among these external stimuli, magnetic stimulus is featured by remote and contactless control, fast, precise, extremely strong penetration, safe, easy tunability, and so on. By doping magnetic nanoparticles into LCEs, their actuation and motion can be triggered by magnetic fields or forces untetheredly, remotely, and highly precisely. Therefore, the magnetic nanoparticles endow LCEs with magneto-responsiveness, opening doors to LCEs for many unique potential uses, such as magnetic read-out, magnetic valves, magnetic switches, and so on. This review summarizes recent advances in magneto-responsive LCE nanocomposites. Their fabrication is comprehensively discussed. New properties of magneto-responsive LCEs brought by magnetic nanoparticles are also thoroughly reviewed. Their promising applications are subsequently summarized and explored.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"74 ","pages":"Pages 167-186"},"PeriodicalIF":21.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000208","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As ideal and smart stimuli-responsive materials for soft actuators, artificial muscles, etc., liquid crystalline elastomers (LCEs) can respond to external stimuli, including heat, light, electricity, magnetism, humidity, etc., and make corresponding deformations. Among these external stimuli, magnetic stimulus is featured by remote and contactless control, fast, precise, extremely strong penetration, safe, easy tunability, and so on. By doping magnetic nanoparticles into LCEs, their actuation and motion can be triggered by magnetic fields or forces untetheredly, remotely, and highly precisely. Therefore, the magnetic nanoparticles endow LCEs with magneto-responsiveness, opening doors to LCEs for many unique potential uses, such as magnetic read-out, magnetic valves, magnetic switches, and so on. This review summarizes recent advances in magneto-responsive LCE nanocomposites. Their fabrication is comprehensively discussed. New properties of magneto-responsive LCEs brought by magnetic nanoparticles are also thoroughly reviewed. Their promising applications are subsequently summarized and explored.

Abstract Image

磁响应液晶弹性体纳米复合材料
[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信