Better-than-classical Grover search via quantum error detection and suppression

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Bibek Pokharel, Daniel A. Lidar
{"title":"Better-than-classical Grover search via quantum error detection and suppression","authors":"Bibek Pokharel, Daniel A. Lidar","doi":"10.1038/s41534-023-00794-6","DOIUrl":null,"url":null,"abstract":"<p>We report better-than-classical success probabilities for a complete Grover quantum search algorithm on the largest scale demonstrated to date, of up to five qubits, using two different IBM platforms. This is enabled by error suppression via robust dynamical decoupling. Further improvements arise after the use of measurement error mitigation, but the latter is insufficient by itself for achieving better-than-classical performance. For two qubits, we demonstrate a 99.5% success probability via the use of the [[4, 2, 2]] quantum error-detection (QED) code. This constitutes a demonstration of quantum algorithmic breakeven via QED. Along the way, we introduce <i>algorithmic error tomography</i> (AET), a method that provides a holistic view of the errors accumulated throughout an entire quantum algorithm, filtered via the errors detected by the QED code used to encode the circuit. We demonstrate that AET provides a stringent test of an error model based on a combination of amplitude damping, dephasing, and depolarization.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"35 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-023-00794-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We report better-than-classical success probabilities for a complete Grover quantum search algorithm on the largest scale demonstrated to date, of up to five qubits, using two different IBM platforms. This is enabled by error suppression via robust dynamical decoupling. Further improvements arise after the use of measurement error mitigation, but the latter is insufficient by itself for achieving better-than-classical performance. For two qubits, we demonstrate a 99.5% success probability via the use of the [[4, 2, 2]] quantum error-detection (QED) code. This constitutes a demonstration of quantum algorithmic breakeven via QED. Along the way, we introduce algorithmic error tomography (AET), a method that provides a holistic view of the errors accumulated throughout an entire quantum algorithm, filtered via the errors detected by the QED code used to encode the circuit. We demonstrate that AET provides a stringent test of an error model based on a combination of amplitude damping, dephasing, and depolarization.

Abstract Image

通过量子错误检测和抑制实现优于经典的格罗弗搜索
我们利用两个不同的 IBM 平台,报告了迄今为止最大规模(多达五个量子比特)的完整格罗弗量子搜索算法的优于经典的成功概率。这得益于通过稳健的动态解耦抑制误差。在使用测量误差缓解后,性能得到进一步提高,但后者本身不足以实现优于经典的性能。对于两个量子比特,我们通过使用[[4, 2, 2]]量子纠错(QED)代码证明了 99.5% 的成功概率。这是通过 QED 实现量子算法盈亏平衡的演示。在此过程中,我们引入了算法误差断层扫描(AET),这是一种通过用于编码电路的 QED 代码所检测到的误差进行过滤,从而对整个量子算法所积累的误差进行整体观察的方法。我们证明,AET 可以对基于振幅阻尼、去相和去极化组合的误差模型进行严格测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信