Development and optimization of a modular two-fragment LacI switch for enhanced biosensor applications

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Development and optimization of a modular two-fragment LacI switch for enhanced biosensor applications","authors":"","doi":"10.1007/s12257-024-00020-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Being able to perform modular design of artificial transcription factors is useful in bioengineering and synthetic biology, particularly in the development of biosensors and therapeutics. This study aimed to develop a two-fragment transcription factor system by splitting a lactose repressor (LacI). To fragment LacI, we screened potential split positions from transposon-based insertional libraries that we generated to identify those positions that did not disturb the intrinsic activity of LacI. The interaction of protein tags fused with fragments induces the reassembly of LacI and recovers the isopropyl-β-D-thiogalactoside-dependent regulatory function. The split LacI-based biosensor was implemented on an in vitro platform using a cell-free protein expression system to facilitate accurate analytical studies with high reproducibility. This versatile platform holds great potential to realize the rapid and simple detection of protein–protein interactions in cell-free systems; thus, it can be further extended to disease diagnosis, particularly at the point-of-care.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00020-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Being able to perform modular design of artificial transcription factors is useful in bioengineering and synthetic biology, particularly in the development of biosensors and therapeutics. This study aimed to develop a two-fragment transcription factor system by splitting a lactose repressor (LacI). To fragment LacI, we screened potential split positions from transposon-based insertional libraries that we generated to identify those positions that did not disturb the intrinsic activity of LacI. The interaction of protein tags fused with fragments induces the reassembly of LacI and recovers the isopropyl-β-D-thiogalactoside-dependent regulatory function. The split LacI-based biosensor was implemented on an in vitro platform using a cell-free protein expression system to facilitate accurate analytical studies with high reproducibility. This versatile platform holds great potential to realize the rapid and simple detection of protein–protein interactions in cell-free systems; thus, it can be further extended to disease diagnosis, particularly at the point-of-care.

开发和优化用于增强生物传感器应用的模块化双片段 LacI 开关
摘要 能够对人工转录因子进行模块化设计对生物工程和合成生物学非常有用,尤其是在开发生物传感器和治疗药物方面。本研究旨在通过分割乳糖抑制因子(LacI)来开发双片段转录因子系统。为了分割 LacI,我们从基于转座子的插入文库中筛选了潜在的分割位置,以确定那些不会干扰 LacI 固有活性的位置。与片段融合的蛋白标签相互作用可诱导 LacI 重新组装,并恢复异丙基-β-D-硫代半乳糖苷依赖性调控功能。基于裂解 LacI 的生物传感器是在体外平台上利用无细胞蛋白表达系统实现的,以促进精确的分析研究,并具有高度的可重复性。这种多功能平台在实现无细胞系统中蛋白质-蛋白质相互作用的快速、简单检测方面具有巨大潜力;因此,它可以进一步扩展到疾病诊断,特别是在医疗点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and Bioprocess Engineering
Biotechnology and Bioprocess Engineering 工程技术-生物工程与应用微生物
CiteScore
5.00
自引率
12.50%
发文量
79
审稿时长
3 months
期刊介绍: Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信