{"title":"Temporal Regularity of Symmetric Stochastic p-Stokes Systems","authors":"Jörn Wichmann","doi":"10.1007/s00021-024-00852-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study the symmetric stochastic <i>p</i>-Stokes system, <span>\\(p \\in (1,\\infty )\\)</span>, in a bounded domain. The results are two-fold: First, we show that in the context of analytically weak solutions, the stochastic pressure—related to non-divergence free stochastic forces—enjoys almost <span>\\(-1/2\\)</span> temporal derivatives on a Besov scale. Second, we verify that the velocity <i>u</i> of strong solutions obeys 1/2 temporal derivatives in an exponential Nikolskii space. Moreover, we prove that the non-linear symmetric gradient <span>\\(V(\\mathbb {\\epsilon } u) = (\\kappa + \\left| \\mathbb {\\epsilon } u\\right| )^{(p-2)/2} \\mathbb {\\epsilon } u\\)</span>, <span>\\(\\kappa \\ge 0\\)</span>, which measures the ellipticity of the <i>p</i>-Stokes system, has 1/2 temporal derivatives in a Nikolskii space.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00852-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00852-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study the symmetric stochastic p-Stokes system, \(p \in (1,\infty )\), in a bounded domain. The results are two-fold: First, we show that in the context of analytically weak solutions, the stochastic pressure—related to non-divergence free stochastic forces—enjoys almost \(-1/2\) temporal derivatives on a Besov scale. Second, we verify that the velocity u of strong solutions obeys 1/2 temporal derivatives in an exponential Nikolskii space. Moreover, we prove that the non-linear symmetric gradient \(V(\mathbb {\epsilon } u) = (\kappa + \left| \mathbb {\epsilon } u\right| )^{(p-2)/2} \mathbb {\epsilon } u\), \(\kappa \ge 0\), which measures the ellipticity of the p-Stokes system, has 1/2 temporal derivatives in a Nikolskii space.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.