Nowhere constant families of maps and resolvability

István Juhász, Jan van Mill
{"title":"Nowhere constant families of maps and resolvability","authors":"István Juhász, Jan van Mill","doi":"10.4153/s0008439524000109","DOIUrl":null,"url":null,"abstract":"<p>If <span>X</span> is a topological space and <span>Y</span> is any set, then we call a family <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221124122868-0846:S0008439524000109:S0008439524000109_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathcal {F}$</span></span></img></span></span> of maps from <span>X</span> to <span>Y nowhere constant</span> if for every non-empty open set <span>U</span> in <span>X</span> there is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221124122868-0846:S0008439524000109:S0008439524000109_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$f \\in \\mathcal {F}$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221124122868-0846:S0008439524000109:S0008439524000109_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$|f[U]|&gt; 1$</span></span></img></span></span>, i.e., <span>f</span> is not constant on <span>U</span>. We prove the following result that improves several earlier results in the literature.</p><p>If <span>X</span> is a topological space for which <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221124122868-0846:S0008439524000109:S0008439524000109_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C(X)$</span></span></img></span></span>, the family of all continuous maps of <span>X</span> to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221124122868-0846:S0008439524000109:S0008439524000109_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}$</span></span></img></span></span>, is nowhere constant and <span>X</span> has a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221124122868-0846:S0008439524000109:S0008439524000109_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi $</span></span></img></span></span>-base consisting of connected sets then <span>X</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240221124122868-0846:S0008439524000109:S0008439524000109_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {c}$</span></span></img></span></span>-resolvable.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

If X is a topological space and Y is any set, then we call a family Abstract Image$\mathcal {F}$ of maps from X to Y nowhere constant if for every non-empty open set U in X there is Abstract Image$f \in \mathcal {F}$ with Abstract Image$|f[U]|> 1$, i.e., f is not constant on U. We prove the following result that improves several earlier results in the literature.

If X is a topological space for which Abstract Image$C(X)$, the family of all continuous maps of X to Abstract Image$\mathbb {R}$, is nowhere constant and X has a Abstract Image$\pi $-base consisting of connected sets then X is Abstract Image$\mathfrak {c}$-resolvable.

地图的无常族和可解性
如果 X 是拓扑空间,Y 是任意集合,那么我们称从 X 到 Y 的 $\mathcal {F}$ 映射族为无处常量,如果对于 X 中的每个非空开集 U,在 $\mathcal {F}$ 中有 $f ||f[U]|>1$,即 f 在 U 上不是常量、如果 X 是一个拓扑空间,其中 $C(X)$,即 X 到 $\mathbb {R}$ 的所有连续映射的族,是无处不变的,并且 X 有一个由连通集组成的 $\pi $ 基,那么 X 是 $\mathfrak {c}$ 可解决的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信