Dirac Operators with Exponentially Decaying Entropy

IF 2.3 2区 数学 Q1 MATHEMATICS
Pavel Gubkin
{"title":"Dirac Operators with Exponentially Decaying Entropy","authors":"Pavel Gubkin","doi":"10.1007/s00365-024-09678-0","DOIUrl":null,"url":null,"abstract":"<p>We prove that the Weyl function of the one-dimensional Dirac operator on the half-line <span>\\({\\mathbb {R}}_+\\)</span> with exponentially decaying entropy extends meromorphically into the horizontal strip <span>\\(\\{0\\geqslant \\mathop {\\textrm{Im}}\\nolimits z &gt; -\\delta \\}\\)</span> for some <span>\\(\\delta &gt; 0\\)</span> depending on the rate of decay. If the entropy decreases very rapidly then the corresponding Weyl function turns out to be meromorphic in the whole complex plane. In this situation we show that poles of the Weyl function (scattering resonances) uniquely determine the operator.</p>","PeriodicalId":50621,"journal":{"name":"Constructive Approximation","volume":"18 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Approximation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00365-024-09678-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the Weyl function of the one-dimensional Dirac operator on the half-line \({\mathbb {R}}_+\) with exponentially decaying entropy extends meromorphically into the horizontal strip \(\{0\geqslant \mathop {\textrm{Im}}\nolimits z > -\delta \}\) for some \(\delta > 0\) depending on the rate of decay. If the entropy decreases very rapidly then the corresponding Weyl function turns out to be meromorphic in the whole complex plane. In this situation we show that poles of the Weyl function (scattering resonances) uniquely determine the operator.

Abstract Image

熵指数衰减的狄拉克算子
我们证明,一维狄拉克算子在熵指数衰减的半线\({\mathbb {R}}_+\) 上的韦尔函数,对于某个取决于衰减速度的\(\delta > 0\) ,会在水平条带\(\{0\geqslant \mathop{\textrm{Im}}\nolimits z > -\delta \}\)上以非线性方式扩展。如果熵下降得非常快,那么相应的韦尔函数在整个复平面内就会变成全态。在这种情况下,我们证明韦尔函数的极点(散射共振)唯一地决定了算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
3.70%
发文量
35
审稿时长
1 months
期刊介绍: Constructive Approximation is an international mathematics journal dedicated to Approximations and Expansions and related research in computation, function theory, functional analysis, interpolation spaces and interpolation of operators, numerical analysis, space of functions, special functions, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信