A numerical study of multiscale current effects on waves in the northern South China Sea

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Liqun Jia , Renhao Wu , Fei Shi , Bo Han , Qinghua Yang
{"title":"A numerical study of multiscale current effects on waves in the northern South China Sea","authors":"Liqun Jia ,&nbsp;Renhao Wu ,&nbsp;Fei Shi ,&nbsp;Bo Han ,&nbsp;Qinghua Yang","doi":"10.1016/j.ocemod.2024.102342","DOIUrl":null,"url":null,"abstract":"<div><p>The current effects on waves (CEW) are of interest owing to their importance for our understanding of wave dynamics. However, there is a lack of research on the effects of multiscale currents on waves in the northern South China Sea. In this study, we conducted a series of process-oriented numerical experiments to quantitatively investigate the characteristics of multiscale currents and their effects on surface waves. The results indicate that the high-resolution simulated currents with tides show more submesoscale processes, where the spatial variability of significant wave height (Hs) at the 10–100 km scale exceeds that in low-resolution simulated currents by a factor of 24 and that in tideless simulated currents by a factor of 39. The divergent component of the surface current dominates the CEW in the northern South China Sea. High-resolution currents induce more refraction of wind waves with shorter wave periods. Furthermore, we investigated the impact of tropical cyclones on the CEW and found that they briefly increase the divergence and relative vorticity of surface currents while temporarily weakening the modulation of submesoscale CEW. This research highlights the importance of submesoscale currents and tidal currents in wave simulations, thus contributing to the improvement of observational and numerical simulation methods.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"188 ","pages":"Article 102342"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000295","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The current effects on waves (CEW) are of interest owing to their importance for our understanding of wave dynamics. However, there is a lack of research on the effects of multiscale currents on waves in the northern South China Sea. In this study, we conducted a series of process-oriented numerical experiments to quantitatively investigate the characteristics of multiscale currents and their effects on surface waves. The results indicate that the high-resolution simulated currents with tides show more submesoscale processes, where the spatial variability of significant wave height (Hs) at the 10–100 km scale exceeds that in low-resolution simulated currents by a factor of 24 and that in tideless simulated currents by a factor of 39. The divergent component of the surface current dominates the CEW in the northern South China Sea. High-resolution currents induce more refraction of wind waves with shorter wave periods. Furthermore, we investigated the impact of tropical cyclones on the CEW and found that they briefly increase the divergence and relative vorticity of surface currents while temporarily weakening the modulation of submesoscale CEW. This research highlights the importance of submesoscale currents and tidal currents in wave simulations, thus contributing to the improvement of observational and numerical simulation methods.

南海北部多尺度海流对波浪影响的数值研究
海流对波浪的影响(CEW)因其对我们理解波浪动力学的重要性而备受关注。然而,关于南海北部多尺度海流对波浪影响的研究还很缺乏。在本研究中,我们进行了一系列面向过程的数值实验,定量研究了多尺度海流的特征及其对表面波的影响。结果表明,有潮汐的高分辨率模拟海流表现出更多的次中尺度过程,其中 10-100 公里尺度的显著波高(Hs)空间变率超过低分辨率模拟海流 24 倍,超过无潮汐模拟海流 39 倍。表层洋流的发散成分主导了南海北部的 CEW。高分辨率海流诱发了更多波长更短的风浪折射。此外,我们还研究了热带气旋对 CEW 的影响,发现热带气旋会短暂增加表层流的发散和相对涡度,同时暂时减弱对亚中尺度 CEW 的调制。这项研究强调了次中尺度海流和潮流在波浪模拟中的重要性,从而有助于改进观测和数值模拟方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信