On the Generalized Lemaitre Tolman Bondi Metric: Classical Sensitivities and Quantum Einstein-Vaz Shells

IF 7.8 3区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Mohammadreza Molaei, Christian Corda
{"title":"On the Generalized Lemaitre Tolman Bondi Metric: Classical Sensitivities and Quantum Einstein-Vaz Shells","authors":"Mohammadreza Molaei,&nbsp;Christian Corda","doi":"10.1002/prop.202300195","DOIUrl":null,"url":null,"abstract":"<p>In this paper, in the classical framework, the lower bounds for the sensitivities of the generalized Lemaitre Tolman Bondi metric are evaluated. The calculated lower bounds via the linear dynamical systems <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>θ</mi>\n </mrow>\n </mfrac>\n </msub>\n <annotation>$L_{\\frac{\\partial }{\\partial \\theta }}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>r</mi>\n </mrow>\n </mfrac>\n </msub>\n <annotation>$L_{\\frac{\\partial }{\\partial r}}$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>ϕ</mi>\n </mrow>\n </mfrac>\n </msub>\n <annotation>$L_{\\frac{\\partial }{\\partial \\phi }}$</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>−</mo>\n <mi>ln</mi>\n <mn>2</mn>\n <mo>+</mo>\n <mi>ln</mi>\n <mo>|</mo>\n </mrow>\n <msup>\n <mrow>\n <mo>(</mo>\n <mover>\n <mi>R</mi>\n <mo>̇</mo>\n </mover>\n <mi>B</mi>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mo>−</mo>\n <msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mo>′</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n <mn>2</mn>\n </msup>\n <mrow>\n <mo>|</mo>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ln</mi>\n <mo>|</mo>\n <mi>B</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$-\\ln 2+\\ln|{(\\dot{R}B)}^{2}-{(R^{\\prime })}^{2}|-2\\ln|B|$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mn>2</mn>\n <mi>ln</mi>\n <mo>|</mo>\n </mrow>\n <mover>\n <mi>B</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <mo>|</mo>\n <mo>−</mo>\n <mi>ln</mi>\n <mn>2</mn>\n </mrow>\n </mrow>\n <annotation>$2\\ln|\\dot{B}|-\\ln 2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>−</mo>\n <mi>ln</mi>\n <mn>2</mn>\n <mo>−</mo>\n <mn>2</mn>\n <mi>ln</mi>\n <mo>|</mo>\n <mi>B</mi>\n <mo>|</mo>\n <mo>+</mo>\n <mi>ln</mi>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mo>(</mo>\n <msup>\n <mover>\n <mi>R</mi>\n <mo>̇</mo>\n </mover>\n <mn>2</mn>\n </msup>\n <msup>\n <mi>B</mi>\n <mn>2</mn>\n </msup>\n <mo>−</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mo>′</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <msup>\n <mi>sin</mi>\n <mn>2</mn>\n </msup>\n <mi>θ</mi>\n <mo>−</mo>\n <msup>\n <mi>B</mi>\n <mn>2</mn>\n </msup>\n <msup>\n <mi>cos</mi>\n <mn>2</mn>\n </msup>\n <mrow>\n <mi>θ</mi>\n <mo>|</mo>\n </mrow>\n </mrow>\n <annotation>$-\\ln 2-2\\ln|B|+ \\ln |(\\dot{R}^{2}B^{2}-R^{\\prime 2})\\sin ^{2}\\theta -B^{2}\\cos ^{2}\\theta|$</annotation>\n </semantics></math> respectively. The sensitivities and the lower sensitivities via <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mfrac>\n </msub>\n <annotation>$L_{\\frac{\\partial }{\\partial t}}$</annotation>\n </semantics></math> are zero are also shown. In the quantum framework, the properties of the Einstein-Vaz shells which are the final result of the quantum gravitational collapse arising from the Lemaitre Tolman Bondi discussed by Vaz in 2014 are analyzed. In fact, Vaz showed that continued collapse to a singularity can only be obtained if one combines two independent and entire solutions of the Wheeler-DeWitt equation. Forbidding such a combination leads naturally to matter condensing on the Schwarzschild surface during quantum collapse. In that way, an entirely new framework for black holes (BHs) has emerged. The approach of Vaz was also consistent with Einstein's idea in 1939 of the localization of the collapsing particles within a thin spherical shell. Here, following an approach of oned of us (CC), we derive the BH mass and energy spectra via a Schrodinger-like approach, by further supporting Vaz's conclusions that instead of a spacetime singularity covered by an event horizon, the final result of the gravitational collapse is an essentially quantum object, an extremely compact “dark star”. This “gravitational atom” is held up not by any degeneracy pressure but by quantum gravity in the same way that ordinary atoms are sustained by quantum mechanics. Finally, the time evolution of the Einstein-Vaz shells is discussed.</p>","PeriodicalId":55150,"journal":{"name":"Fortschritte Der Physik-Progress of Physics","volume":"72 4","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fortschritte Der Physik-Progress of Physics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/prop.202300195","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, in the classical framework, the lower bounds for the sensitivities of the generalized Lemaitre Tolman Bondi metric are evaluated. The calculated lower bounds via the linear dynamical systems L θ $L_{\frac{\partial }{\partial \theta }}$ , L r $L_{\frac{\partial }{\partial r}}$ , and L ϕ $L_{\frac{\partial }{\partial \phi }}$ are ln 2 + ln | ( R ̇ B ) 2 ( R ) 2 | 2 ln | B | $-\ln 2+\ln|{(\dot{R}B)}^{2}-{(R^{\prime })}^{2}|-2\ln|B|$ , 2 ln | B ̇ | ln 2 $2\ln|\dot{B}|-\ln 2$ and ln 2 2 ln | B | + ln | ( R ̇ 2 B 2 R 2 ) sin 2 θ B 2 cos 2 θ | $-\ln 2-2\ln|B|+ \ln |(\dot{R}^{2}B^{2}-R^{\prime 2})\sin ^{2}\theta -B^{2}\cos ^{2}\theta|$ respectively. The sensitivities and the lower sensitivities via L t $L_{\frac{\partial }{\partial t}}$ are zero are also shown. In the quantum framework, the properties of the Einstein-Vaz shells which are the final result of the quantum gravitational collapse arising from the Lemaitre Tolman Bondi discussed by Vaz in 2014 are analyzed. In fact, Vaz showed that continued collapse to a singularity can only be obtained if one combines two independent and entire solutions of the Wheeler-DeWitt equation. Forbidding such a combination leads naturally to matter condensing on the Schwarzschild surface during quantum collapse. In that way, an entirely new framework for black holes (BHs) has emerged. The approach of Vaz was also consistent with Einstein's idea in 1939 of the localization of the collapsing particles within a thin spherical shell. Here, following an approach of oned of us (CC), we derive the BH mass and energy spectra via a Schrodinger-like approach, by further supporting Vaz's conclusions that instead of a spacetime singularity covered by an event horizon, the final result of the gravitational collapse is an essentially quantum object, an extremely compact “dark star”. This “gravitational atom” is held up not by any degeneracy pressure but by quantum gravity in the same way that ordinary atoms are sustained by quantum mechanics. Finally, the time evolution of the Einstein-Vaz shells is discussed.

论广义勒梅特-托尔曼-邦迪公设:经典敏感性与量子爱因斯坦-瓦兹壳
本文在经典框架下评估了广义勒梅特-托尔曼-邦迪度量的敏感性下界。通过线性动力系统 L∂∂θ$L_{\frac\{partial }{partial \theta }}$, L∂r$L_{\frac\{partial }{partial r}}$、和 L∂∂j$L_{frac\{partial }{partial \phi }}$ 都是 -ln2+ln|(ṘB)2-(R′)2|-2ln|B|$-\ln 2+ln|{(\dot{R}B)}^{2}-{(R^{prime })}^{2}|-2\ln|B|$、2ln|Ḃ|-ln2$2\ln|\dot{B}|-\ln 2$ 和 -ln2-2ln|B|+ln|(Ṙ2B2-R′2)sin2θ-B2cos2θ|$-\ln 2\-2ln|B|+ \ln|(\dot{R}^{2}B^{2}-R^{prime 2})\sin ^{2}\theta -B^{2}\cos ^{2}\theta|$ 分别。通过 L∂∂t$L_{\frac\{partial }{partial t}}$ 的敏感度和下敏感度为零也被显示出来。在量子框架中,分析了爱因斯坦-瓦兹壳的性质,这些壳是瓦兹在 2014 年讨论的勒梅特-托尔曼-邦迪引起的量子引力坍缩的最终结果。事实上,瓦兹表明,只有将惠勒-德威特方程的两个独立完整解结合起来,才能获得持续坍缩到奇点的结果。禁止这种组合自然会导致物质在量子坍缩过程中凝结在施瓦兹柴尔德表面。这样,一个全新的黑洞(BHs)框架就出现了。瓦兹的方法也与爱因斯坦在 1939 年提出的坍缩粒子在薄球壳内局部化的观点相一致。在这里,我们采用了一种类似薛定谔的方法,进一步支持瓦兹的结论,即引力坍缩的最终结果不是一个被事件穹界覆盖的时空奇点,而是一个本质上的量子物体,一颗极其紧凑的 "暗星"。支撑这个 "引力原子 "的不是任何退化压力,而是量子引力,就像量子力学支撑普通原子一样。最后,我们讨论了爱因斯坦-瓦兹壳的时间演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
7.70%
发文量
75
审稿时长
6-12 weeks
期刊介绍: The journal Fortschritte der Physik - Progress of Physics is a pure online Journal (since 2013). Fortschritte der Physik - Progress of Physics is devoted to the theoretical and experimental studies of fundamental constituents of matter and their interactions e. g. elementary particle physics, classical and quantum field theory, the theory of gravitation and cosmology, quantum information, thermodynamics and statistics, laser physics and nonlinear dynamics, including chaos and quantum chaos. Generally the papers are review articles with a detailed survey on relevant publications, but original papers of general interest are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信