Propagating variational model uncertainty for bioacoustic call label smoothing

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Georgios Rizos, Jenna Lawson, Simon Mitchell, Pranay Shah, Xin Wen, Cristina Banks-Leite, Robert Ewers, Björn W. Schuller
{"title":"Propagating variational model uncertainty for bioacoustic call label smoothing","authors":"Georgios Rizos, Jenna Lawson, Simon Mitchell, Pranay Shah, Xin Wen, Cristina Banks-Leite, Robert Ewers, Björn W. Schuller","doi":"10.1016/j.patter.2024.100932","DOIUrl":null,"url":null,"abstract":"Along with propagating the input toward making a prediction, Bayesian neural networks also propagate uncertainty. This has the potential to guide the training process by rejecting predictions of low confidence, and recent variational Bayesian methods can do so without Monte Carlo sampling of weights. Here, we apply sample-free methods for wildlife call detection on recordings made via passive acoustic monitoring equipment in the animals’ natural habitats. We further propose uncertainty-aware label smoothing, where the smoothing probability is dependent on sample-free predictive uncertainty, in order to downweigh data samples that should contribute less to the loss value. We introduce a bioacoustic dataset recorded in Malaysian Borneo, containing overlapping calls from 30 species. On that dataset, our proposed method achieves an absolute percentage improvement of around 1.5 points on area under the receiver operating characteristic (AU-ROC), 13 points in F1, and 19.5 points in expected calibration error (ECE) compared to the point-estimate network baseline averaged across all target classes.","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"32 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.100932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Along with propagating the input toward making a prediction, Bayesian neural networks also propagate uncertainty. This has the potential to guide the training process by rejecting predictions of low confidence, and recent variational Bayesian methods can do so without Monte Carlo sampling of weights. Here, we apply sample-free methods for wildlife call detection on recordings made via passive acoustic monitoring equipment in the animals’ natural habitats. We further propose uncertainty-aware label smoothing, where the smoothing probability is dependent on sample-free predictive uncertainty, in order to downweigh data samples that should contribute less to the loss value. We introduce a bioacoustic dataset recorded in Malaysian Borneo, containing overlapping calls from 30 species. On that dataset, our proposed method achieves an absolute percentage improvement of around 1.5 points on area under the receiver operating characteristic (AU-ROC), 13 points in F1, and 19.5 points in expected calibration error (ECE) compared to the point-estimate network baseline averaged across all target classes.
传播变异模型不确定性以平滑生物声学呼叫标签
贝叶斯神经网络在传播预测输入的同时,也传播不确定性。这有可能通过拒绝置信度低的预测来指导训练过程,而最新的变异贝叶斯方法可以在不对权重进行蒙特卡罗采样的情况下做到这一点。在这里,我们将无抽样方法应用于野生动物叫声检测,该方法是通过动物自然栖息地的被动声学监测设备采集的录音。我们进一步提出了不确定性感知标签平滑法,其中平滑概率取决于无样本预测的不确定性,以降低对损失值贡献较小的数据样本的权重。我们介绍了在马来西亚婆罗洲记录的生物声学数据集,其中包含 30 个物种的重叠叫声。在该数据集上,与所有目标类别平均的点估计网络基线相比,我们提出的方法在接收器工作特征下面积 (AU-ROC) 方面实现了约 1.5 点的绝对百分比改进,在 F1 方面实现了 13 点的改进,在预期校准误差 (ECE) 方面实现了 19.5 点的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信