A Modified Form of Inertial Viscosity Projection Methods for Variational Inequality and Fixed Point Problems

IF 1.3 4区 数学 Q1 MATHEMATICS
Watanjeet Singh, Sumit Chandok
{"title":"A Modified Form of Inertial Viscosity Projection Methods for Variational Inequality and Fixed Point Problems","authors":"Watanjeet Singh, Sumit Chandok","doi":"10.1155/2024/9509788","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce an iterative algorithm based on an inertial technique that uses the minimum number of projections onto a nonempty, closed, and convex set. We show that the algorithm generates a sequence that converges strongly to the common solution of a variational inequality involving inverse strongly monotone mapping and fixed point problems for a countable family of nonexpansive mappings in the setting of real Hilbert space. Numerical experiments are also presented to discuss the advantages of using our algorithm over earlier established algorithms. Moreover, we solve a real-life signal recovery problem via a minimization problem to demonstrate our algorithm’s practicality.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"50 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9509788","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to introduce an iterative algorithm based on an inertial technique that uses the minimum number of projections onto a nonempty, closed, and convex set. We show that the algorithm generates a sequence that converges strongly to the common solution of a variational inequality involving inverse strongly monotone mapping and fixed point problems for a countable family of nonexpansive mappings in the setting of real Hilbert space. Numerical experiments are also presented to discuss the advantages of using our algorithm over earlier established algorithms. Moreover, we solve a real-life signal recovery problem via a minimization problem to demonstrate our algorithm’s practicality.
用于变量不等式和定点问题的惯性粘度投影方法的改进形式
本文旨在介绍一种基于惯性技术的迭代算法,该算法使用对非空、封闭和凸集的最小投影次数。我们证明,该算法生成的序列能强烈收敛到涉及反强单调映射的变分不等式的公共解,以及实希尔伯特空间背景下可数族非膨胀映射的定点问题。我们还介绍了数值实验,以讨论使用我们的算法相对于早期已有算法的优势。此外,我们还通过最小化问题解决了一个现实生活中的信号恢复问题,以证明我们算法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信