{"title":"Comparison of Various Angle-Tracking Algorithms to Balance Performance and Noise for a Steering-by-Wire System","authors":"He Liu, Yahui Liu, Jingyuan Li, Xuewu Ji","doi":"10.1007/s12239-024-00038-2","DOIUrl":null,"url":null,"abstract":"<p>This paper compares various angle-tracking algorithms to balance the performance and noise for a steering-by-wire (SBW) system. Direct and quiet steering experiences can improve drivers’ acceptance of the SBW system. Linear quadratic regulator (LQR) control, robust control, and conventional cascade proportional–integral (PI) control have been developed and compared both theoretically and experimentally. To avoid the risky and time-consuming parameter-tuning process, a high-fidelity steering resistance model, which comprises a linear two-degree-of-freedom vehicle model and a dynamic LuGre friction model is established. Step and sine wave tests are simulated in a Matlab/Simulink environment to determine the reasonable parameter region for various methods. Then, the three types of algorithms are implemented on a prototype SBW vehicle and compared under the same scenarios. Finally, the simulated and experimental results are illustrated in detail. According to the indicators of control bandwidths, steady-state errors, cockpit sounds, and current waveforms, it is clear that LQR and robust control can achieve faster response and more acceptable noise, with uncertain and relatively larger tracking errors. Cascade PI control, in comparison, can realize smaller steady-state errors and gentler current waveforms, with slight noise and slower response.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00038-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper compares various angle-tracking algorithms to balance the performance and noise for a steering-by-wire (SBW) system. Direct and quiet steering experiences can improve drivers’ acceptance of the SBW system. Linear quadratic regulator (LQR) control, robust control, and conventional cascade proportional–integral (PI) control have been developed and compared both theoretically and experimentally. To avoid the risky and time-consuming parameter-tuning process, a high-fidelity steering resistance model, which comprises a linear two-degree-of-freedom vehicle model and a dynamic LuGre friction model is established. Step and sine wave tests are simulated in a Matlab/Simulink environment to determine the reasonable parameter region for various methods. Then, the three types of algorithms are implemented on a prototype SBW vehicle and compared under the same scenarios. Finally, the simulated and experimental results are illustrated in detail. According to the indicators of control bandwidths, steady-state errors, cockpit sounds, and current waveforms, it is clear that LQR and robust control can achieve faster response and more acceptable noise, with uncertain and relatively larger tracking errors. Cascade PI control, in comparison, can realize smaller steady-state errors and gentler current waveforms, with slight noise and slower response.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.