Jin-San Cheng , Kai Jin , Marc Pouget , Junyi Wen , Bingwei Zhang
{"title":"An improved complexity bound for computing the topology of a real algebraic space curve","authors":"Jin-San Cheng , Kai Jin , Marc Pouget , Junyi Wen , Bingwei Zhang","doi":"10.1016/j.jsc.2024.102309","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a new algorithm to compute the topology of a real algebraic space curve. The novelties of this algorithm are a new technique to achieve the lifting step which recovers points of the space curve in each plane fiber from several projections and a weaker notion of generic position. As distinct to previous work, our <em>sweep generic position</em> does not require that <em>x</em>-critical points have different <em>x</em>-coordinates. The complexity of achieving this sweep generic position property is thus no longer a bottleneck in term of complexity. The bit complexity of our algorithm is <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>18</mn></mrow></msup><mo>+</mo><msup><mrow><mi>d</mi></mrow><mrow><mn>17</mn></mrow></msup><mi>τ</mi><mo>)</mo></math></span> where <em>d</em> and <em>τ</em> bound the degree and the bitsize of the integer coefficients, respectively, of the defining polynomials of the curve and polylogarithmic factors are ignored. To the best of our knowledge, this improves upon the best currently known results at least by a factor of <span><math><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000130","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a new algorithm to compute the topology of a real algebraic space curve. The novelties of this algorithm are a new technique to achieve the lifting step which recovers points of the space curve in each plane fiber from several projections and a weaker notion of generic position. As distinct to previous work, our sweep generic position does not require that x-critical points have different x-coordinates. The complexity of achieving this sweep generic position property is thus no longer a bottleneck in term of complexity. The bit complexity of our algorithm is where d and τ bound the degree and the bitsize of the integer coefficients, respectively, of the defining polynomials of the curve and polylogarithmic factors are ignored. To the best of our knowledge, this improves upon the best currently known results at least by a factor of .
我们提出了一种计算实代数空间曲线拓扑结构的新算法。该算法的新颖之处在于采用了一种新技术来实现提升步骤,即从多个投影中恢复空间曲线在每个平面纤维中的点,以及弱化泛函位置的概念。与之前的工作不同的是,我们的 "横扫通用位置 "不要求 x 关键点具有不同的 x 坐标。因此,实现扫频泛位属性的复杂性不再是复杂性的瓶颈。我们算法的比特复杂度为 O˜(d18+d17τ),其中 d 和 τ 分别表示曲线定义多项式的整数系数的阶数和比特大小,多对数因子被忽略。据我们所知,这比目前已知的最佳结果至少提高了 d2 倍。
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.