Accelerating spiking neural network simulations with PymoNNto and PymoNNtorch

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Marius Vieth, Ali Rahimi, Ashena Gorgan Mohammadi, Jochen Triesch, Mohammad Ganjtabesh
{"title":"Accelerating spiking neural network simulations with PymoNNto and PymoNNtorch","authors":"Marius Vieth, Ali Rahimi, Ashena Gorgan Mohammadi, Jochen Triesch, Mohammad Ganjtabesh","doi":"10.3389/fninf.2024.1331220","DOIUrl":null,"url":null,"abstract":"Spiking neural network simulations are a central tool in Computational Neuroscience, Artificial Intelligence, and Neuromorphic Engineering research. A broad range of simulators and software frameworks for such simulations exist with different target application areas. Among these, PymoNNto is a recent Python-based toolbox for spiking neural network simulations that emphasizes the embedding of custom code in a modular and flexible way. While PymoNNto already supports GPU implementations, its backend relies on NumPy operations. Here we introduce PymoNNtorch, which is natively implemented with PyTorch while retaining PymoNNto's modular design. Furthermore, we demonstrate how changes to the implementations of common network operations in combination with PymoNNtorch's native GPU support can offer speed-up over conventional simulators like NEST, ANNarchy, and Brian 2 in certain situations. Overall, we show how PymoNNto's modular and flexible design in combination with PymoNNtorch's GPU acceleration and optimized indexing operations facilitate research and development of spiking neural networks in the Python programming language.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"45 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1331220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural network simulations are a central tool in Computational Neuroscience, Artificial Intelligence, and Neuromorphic Engineering research. A broad range of simulators and software frameworks for such simulations exist with different target application areas. Among these, PymoNNto is a recent Python-based toolbox for spiking neural network simulations that emphasizes the embedding of custom code in a modular and flexible way. While PymoNNto already supports GPU implementations, its backend relies on NumPy operations. Here we introduce PymoNNtorch, which is natively implemented with PyTorch while retaining PymoNNto's modular design. Furthermore, we demonstrate how changes to the implementations of common network operations in combination with PymoNNtorch's native GPU support can offer speed-up over conventional simulators like NEST, ANNarchy, and Brian 2 in certain situations. Overall, we show how PymoNNto's modular and flexible design in combination with PymoNNtorch's GPU acceleration and optimized indexing operations facilitate research and development of spiking neural networks in the Python programming language.
利用 PymoNNto 和 PymoNNtorch 加速尖峰神经网络仿真
尖峰神经网络模拟是计算神经科学、人工智能和神经形态工程研究的核心工具。针对不同的目标应用领域,有多种用于此类模拟的模拟器和软件框架。其中,PymoNNto 是最近推出的一款基于 Python 的尖峰神经网络仿真工具箱,它强调以模块化和灵活的方式嵌入自定义代码。虽然 PymoNNto 已经支持 GPU 实现,但其后台依赖于 NumPy 操作。在这里,我们将介绍 PymoNNtorch,它是用 PyTorch 原生实现的,同时保留了 PymoNNto 的模块化设计。此外,我们还展示了如何通过改变常见网络操作的实现方式,结合 PymoNNtorch 的原生 GPU 支持,在某些情况下实现比 NEST、ANNarchy 和 Brian 2 等传统模拟器更快的速度。总之,我们展示了 PymoNNto 的模块化和灵活设计如何与 PymoNNtorch 的 GPU 加速和优化索引操作相结合,促进了 Python 编程语言中尖峰神经网络的研究与开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信