A multi-subsystem collaborative Bi-LSTM-based adaptive soft sensor for global prediction of ammonia-nitrogen concentration in wastewater treatment processes
{"title":"A multi-subsystem collaborative Bi-LSTM-based adaptive soft sensor for global prediction of ammonia-nitrogen concentration in wastewater treatment processes","authors":"Dong Li, Chunhua Yang, Yonggang Li","doi":"10.1016/j.watres.2024.121347","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia-nitrogen concentration is a key water quality indicator, which reflects changes in pollutant components during wastewater treatment processes. The timely and accurate detection results contribute to optimizing control and operational management of wastewater treatment plants (WWTPs), but current detection methods only focus on the effluent location. This paper proposes a multi-subsystem collaborative Bi-LSTM-based adaptive soft sensor to achieve the global prediction of ammonia-nitrogen concentration. Firstly, the wastewater treatment process is divided into several independent subsystems depending on the reaction mechanism, and the variable selection is performed using mutual information. Subsequently, the bidirectional long short-term memory network (Bi-LSTM) is employed to construct a model for predicting ammonia-nitrogen concentration within each subsystem, and the outputs between neighboring subsystems are incorporated as a set of new variables added into the training dataset to strengthen their connection. Finally, to address performance degradation caused by environmental factors, a probability density function (PDF)-based dynamic moving window method is proposed to enhance the robustness. The effectiveness and superiority of the proposed soft sensor are validated in the Benchmark Simulation Model no. 1 (BSM1). The experimental results demonstrate that the proposed soft sensor can accurately predict the global ammonia-nitrogen concentration in the face of different weather conditions including sunny, rainy, and stormy days. This study contributes to the stable operation of WWTPs with higher treatment efficiency and lower economic costs.</p></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"254 ","pages":"Article 121347"},"PeriodicalIF":12.4000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424002495","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia-nitrogen concentration is a key water quality indicator, which reflects changes in pollutant components during wastewater treatment processes. The timely and accurate detection results contribute to optimizing control and operational management of wastewater treatment plants (WWTPs), but current detection methods only focus on the effluent location. This paper proposes a multi-subsystem collaborative Bi-LSTM-based adaptive soft sensor to achieve the global prediction of ammonia-nitrogen concentration. Firstly, the wastewater treatment process is divided into several independent subsystems depending on the reaction mechanism, and the variable selection is performed using mutual information. Subsequently, the bidirectional long short-term memory network (Bi-LSTM) is employed to construct a model for predicting ammonia-nitrogen concentration within each subsystem, and the outputs between neighboring subsystems are incorporated as a set of new variables added into the training dataset to strengthen their connection. Finally, to address performance degradation caused by environmental factors, a probability density function (PDF)-based dynamic moving window method is proposed to enhance the robustness. The effectiveness and superiority of the proposed soft sensor are validated in the Benchmark Simulation Model no. 1 (BSM1). The experimental results demonstrate that the proposed soft sensor can accurately predict the global ammonia-nitrogen concentration in the face of different weather conditions including sunny, rainy, and stormy days. This study contributes to the stable operation of WWTPs with higher treatment efficiency and lower economic costs.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.