Transmutation of zonal twinning dislocations during non-cozone {101¯1} twin-twin interaction in magnesium

IF 15.8 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Peng Chen , Bin Li
{"title":"Transmutation of zonal twinning dislocations during non-cozone {101¯1} twin-twin interaction in magnesium","authors":"Peng Chen ,&nbsp;Bin Li","doi":"10.1016/j.jma.2024.01.032","DOIUrl":null,"url":null,"abstract":"<div><div>Theoretically, a twinning dislocation must stay on the twinning plane which is the first invariant plane of a twinning mode, because the glide of twinning dislocation linearly transforms the parent lattice to the twin lattice. However, recent experimental observations showed that a <span><math><mrow><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow><mrow><mo>〈</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mover><mn>2</mn><mo>¯</mo></mover></mrow><mo>〉</mo></mrow></mrow></math></span> twin variant could cross another variant during twin-twin interaction. It is well known that <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twinning is mediated by zonal twinning dislocations. Thus, how the zonal twinning dislocations transmute during twin-twin interaction is of great interest but not well understood. In this work, atomistic simulation is performed to investigate interaction between <span><math><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>1</mn></mrow><mo>}</mo></mrow></math></span> twin variants. Our results show that when an incoming twin variant impinges on the other which acts as a barrier, surprisingly, the barrier twin can grow at the expense of the incoming twin. Eventually one variant consumes the other. Structural analysis shows that the twinning dislocations of the barrier variant are able to penetrate the zone of twin-twin intersection, by plowing through the lattice of one variant and transform its lattice into the lattice of the other. Careful lattice correspondence analysis reveals that, the lattice transformation from one variant to the other is close to <span><math><mrow><mrow><mo>{</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mn>2</mn></mrow><mo>}</mo></mrow><mrow><mo>〈</mo><mrow><mn>10</mn><mover><mn>1</mn><mo>¯</mo></mover><mover><mn>1</mn><mo>¯</mo></mover></mrow><mo>〉</mo></mrow></mrow></math></span> twinning, but the orientation relationship deviates by a minor lattice rotation. This deviation presents a significant energy barrier to the lattice transformation, and thus it is expected such a twin-twin interaction will increase the stress for twin growth.</div></div>","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"13 2","pages":"Pages 681-696"},"PeriodicalIF":15.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213956724000628","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Theoretically, a twinning dislocation must stay on the twinning plane which is the first invariant plane of a twinning mode, because the glide of twinning dislocation linearly transforms the parent lattice to the twin lattice. However, recent experimental observations showed that a {101¯1}101¯2¯ twin variant could cross another variant during twin-twin interaction. It is well known that {101¯1} twinning is mediated by zonal twinning dislocations. Thus, how the zonal twinning dislocations transmute during twin-twin interaction is of great interest but not well understood. In this work, atomistic simulation is performed to investigate interaction between {101¯1} twin variants. Our results show that when an incoming twin variant impinges on the other which acts as a barrier, surprisingly, the barrier twin can grow at the expense of the incoming twin. Eventually one variant consumes the other. Structural analysis shows that the twinning dislocations of the barrier variant are able to penetrate the zone of twin-twin intersection, by plowing through the lattice of one variant and transform its lattice into the lattice of the other. Careful lattice correspondence analysis reveals that, the lattice transformation from one variant to the other is close to {101¯2}101¯1¯ twinning, but the orientation relationship deviates by a minor lattice rotation. This deviation presents a significant energy barrier to the lattice transformation, and thus it is expected such a twin-twin interaction will increase the stress for twin growth.
镁中非共带{101¯1}孪晶-孪晶相互作用期间带状孪晶位错的嬗变
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Magnesium and Alloys
Journal of Magnesium and Alloys Engineering-Mechanics of Materials
CiteScore
20.20
自引率
14.80%
发文量
52
审稿时长
59 days
期刊介绍: The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信