[Challenges of automation in quantitative evaluation of liver biopsies : Automatic quantification of liver steatosis].

Pathologie (Heidelberg, Germany) Pub Date : 2024-03-01 Epub Date: 2024-02-21 DOI:10.1007/s00292-024-01298-6
Jessica Darling, Nada Abedin, Paul K Ziegler, Steffen Gretser, Barbara Walczak, Ana Paula Barreiros, Falko Schulze, Henning Reis, Peter J Wild, Nadine Flinner
{"title":"[Challenges of automation in quantitative evaluation of liver biopsies : Automatic quantification of liver steatosis].","authors":"Jessica Darling, Nada Abedin, Paul K Ziegler, Steffen Gretser, Barbara Walczak, Ana Paula Barreiros, Falko Schulze, Henning Reis, Peter J Wild, Nadine Flinner","doi":"10.1007/s00292-024-01298-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolic dysfunction-associated steatotic liver disease (MASLD), or non-alcoholic fatty liver disease (NAFLD), is a common disease that is diagnosed through manual evaluation of liver biopsies, an assessment that is subject to high interobserver variability (IBV). IBV can be reduced using automated methods.</p><p><strong>Objectives: </strong>Many existing computer-based methods do not accurately reflect what pathologists evaluate in practice. The goal is to demonstrate how these differences impact the prediction of hepatic steatosis. Additionally, IBV complicates algorithm validation.</p><p><strong>Materials and methods: </strong>Forty tissue sections were analyzed to detect steatosis, nuclei, and fibrosis. Data generated from automated image processing were used to predict steatosis grades. To investigate IBV, 18 liver biopsies were evaluated by multiple observers.</p><p><strong>Results: </strong>Area-based approaches yielded more strongly correlated results than nucleus-based methods (⌀ Spearman rho [ρ] = 0.92 vs. 0.79). The inclusion of information regarding tissue composition reduced the average absolute error for both area- and nucleus-based predictions by 0.5% and 2.2%, respectively. Our final area-based algorithm, incorporating tissue structure information, achieved a high accuracy (80%) and strong correlation (⌀ Spearman ρ = 0.94) with manual evaluation.</p><p><strong>Conclusion: </strong>The automatic and deterministic evaluation of steatosis can be improved by integrating information about tissue composition and can serve to reduce the influence of IBV.</p>","PeriodicalId":74402,"journal":{"name":"Pathologie (Heidelberg, Germany)","volume":" ","pages":"115-123"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00292-024-01298-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), or non-alcoholic fatty liver disease (NAFLD), is a common disease that is diagnosed through manual evaluation of liver biopsies, an assessment that is subject to high interobserver variability (IBV). IBV can be reduced using automated methods.

Objectives: Many existing computer-based methods do not accurately reflect what pathologists evaluate in practice. The goal is to demonstrate how these differences impact the prediction of hepatic steatosis. Additionally, IBV complicates algorithm validation.

Materials and methods: Forty tissue sections were analyzed to detect steatosis, nuclei, and fibrosis. Data generated from automated image processing were used to predict steatosis grades. To investigate IBV, 18 liver biopsies were evaluated by multiple observers.

Results: Area-based approaches yielded more strongly correlated results than nucleus-based methods (⌀ Spearman rho [ρ] = 0.92 vs. 0.79). The inclusion of information regarding tissue composition reduced the average absolute error for both area- and nucleus-based predictions by 0.5% and 2.2%, respectively. Our final area-based algorithm, incorporating tissue structure information, achieved a high accuracy (80%) and strong correlation (⌀ Spearman ρ = 0.94) with manual evaluation.

Conclusion: The automatic and deterministic evaluation of steatosis can be improved by integrating information about tissue composition and can serve to reduce the influence of IBV.

[肝活检定量评估自动化面临的挑战 :肝脏脂肪变性的自动量化]。
背景:代谢功能障碍相关性脂肪性肝病(MASLD)或非酒精性脂肪肝(NAFLD)是一种常见疾病,通过人工评估肝活检组织进行诊断,这种评估方法的观察者间变异性(IBV)很高。使用自动化方法可以降低 IBV:目标:现有的许多基于计算机的方法并不能准确反映病理学家的实际评估结果。目的:现有的许多基于计算机的方法并不能准确反映病理学家的实际评估结果,我们的目标是证明这些差异如何影响肝脏脂肪变性的预测。此外,IBV 使算法验证变得复杂:对 40 个组织切片进行分析,以检测脂肪变性、细胞核和纤维化。自动图像处理生成的数据用于预测脂肪变性等级。为了研究 IBV,多位观察者对 18 例肝脏活检进行了评估:结果:与基于细胞核的方法相比,基于面积的方法得出的结果具有更强的相关性(Spearman rho [ρ] = 0.92 vs. 0.79)。加入组织组成信息后,基于面积和基于细胞核的预测的平均绝对误差分别减少了 0.5% 和 2.2%。我们最终的基于区域的算法结合了组织结构信息,达到了很高的准确率(80%),并且与人工评估结果有很强的相关性(Spearman ρ = 0.94):结论:通过整合组织成分信息,可改善脂肪变性的自动确定性评估,并可减少 IBV 的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信