The Preferential Solvation of Methyl Red in Various Binary Aqueous Solutions: Solvatochromism, Preferential Solvation Parameters, Microheterogeneity of Solvents and Polarity Scale.
{"title":"The Preferential Solvation of Methyl Red in Various Binary Aqueous Solutions: Solvatochromism, Preferential Solvation Parameters, Microheterogeneity of Solvents and Polarity Scale.","authors":"Sokaina Saad Hemdan","doi":"10.1007/s10895-024-03618-8","DOIUrl":null,"url":null,"abstract":"<p><p>The solvatochromic characteristics of methyl red were examined in several aqueous solutions from pure water, with methanol, ethanol, propanol, acetonitrile, and dioxane. In order to explain the preferred solvation of the probe azo dye in the binary mixed solvents, the solvent exchange model of Bosch and Roses was used to evaluate the association between the empirical solvent polarity scale (E<sub>T</sub>) values of MR and solvent composition. Non-linear solvatochromism of methyl red was noted in all aqueous mixtures containing methanol, ethanol, propanol, acetonitrile, and dioxane. In addition to calculating the local mole fraction of each solvent composition in the cybotactic area of the probe, the impact of the solvating shell composition on the preferential solvation of the solute dye was examined in terms of both solvent-solvent and solute-solvent interactions. The local mole fraction of each solvent composition in the cybotactic region of the probe was also calculated. The results indicated that the MR solvation shell was thoroughly saturated with the solvent complex S<sub>12</sub> in the following order: dioxane > ethanol > methanol > acetonitrile > propanol. Data from the binary systems were analyzed with KAT parameters using a multi-model; in aqueous methanol and ethanol solutions, the hydrogen acidity was more responsible for the spectral shift, whereas in aqueous acetonitrile and dioxane solutions, the basicity has a greater influence.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"1491-1503"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03618-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The solvatochromic characteristics of methyl red were examined in several aqueous solutions from pure water, with methanol, ethanol, propanol, acetonitrile, and dioxane. In order to explain the preferred solvation of the probe azo dye in the binary mixed solvents, the solvent exchange model of Bosch and Roses was used to evaluate the association between the empirical solvent polarity scale (ET) values of MR and solvent composition. Non-linear solvatochromism of methyl red was noted in all aqueous mixtures containing methanol, ethanol, propanol, acetonitrile, and dioxane. In addition to calculating the local mole fraction of each solvent composition in the cybotactic area of the probe, the impact of the solvating shell composition on the preferential solvation of the solute dye was examined in terms of both solvent-solvent and solute-solvent interactions. The local mole fraction of each solvent composition in the cybotactic region of the probe was also calculated. The results indicated that the MR solvation shell was thoroughly saturated with the solvent complex S12 in the following order: dioxane > ethanol > methanol > acetonitrile > propanol. Data from the binary systems were analyzed with KAT parameters using a multi-model; in aqueous methanol and ethanol solutions, the hydrogen acidity was more responsible for the spectral shift, whereas in aqueous acetonitrile and dioxane solutions, the basicity has a greater influence.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.