{"title":"Metal toxicity in <i>Bryum coronatum</i> Schwaegrichen: impact on chlorophyll content, lamina cell structure, and metal accumulation.","authors":"Chetsada Phaenark, Paramet Seechanhoi, Weerachon Sawangproh","doi":"10.1080/15226514.2024.2317878","DOIUrl":null,"url":null,"abstract":"<p><p>This research examined the impact of heavy metals, including Cd, Pb, and Zn, on chlorophyll content and lamina cell structure in <i>Bryum coronatum</i>. After exposure to varying metal concentrations (0.015, 0.065, 0.250, 1, and 4 mg/L), chlorophyll content, chloroplast numbers, lamina cell change, and metal accumulation were investigated. Chlorophyll content was assessed using spectrophotometry, whereas chloroplast numbers and lamina cell changes were examined under a light microscope. Metal accumulation was quantified through ICP-MS. The findings revealed that Cd notably reduced chlorophyll <i>a</i> content, while Pb and Zn showed minimal influence. Cd and Pb exposure decreased the number of chloroplasts in lamina cells, with no impact from Zn. The moss's capacity to absorb metals increased with higher exposure levels, indicating its potential as a biomonitor for heavy metal pollution. Cell mortality occurred in response to Cd and Pb, primarily in the median and apical lamina regions, while Zn had no effect. This study sheds light on heavy metal toxicity in <i>B. coronatum</i>, underscoring its significance for environmental monitoring. Further research on the mechanisms and consequences of heavy metal toxicity in bryophytes is essential for a comprehensive understanding of this critical issue.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2317878","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This research examined the impact of heavy metals, including Cd, Pb, and Zn, on chlorophyll content and lamina cell structure in Bryum coronatum. After exposure to varying metal concentrations (0.015, 0.065, 0.250, 1, and 4 mg/L), chlorophyll content, chloroplast numbers, lamina cell change, and metal accumulation were investigated. Chlorophyll content was assessed using spectrophotometry, whereas chloroplast numbers and lamina cell changes were examined under a light microscope. Metal accumulation was quantified through ICP-MS. The findings revealed that Cd notably reduced chlorophyll a content, while Pb and Zn showed minimal influence. Cd and Pb exposure decreased the number of chloroplasts in lamina cells, with no impact from Zn. The moss's capacity to absorb metals increased with higher exposure levels, indicating its potential as a biomonitor for heavy metal pollution. Cell mortality occurred in response to Cd and Pb, primarily in the median and apical lamina regions, while Zn had no effect. This study sheds light on heavy metal toxicity in B. coronatum, underscoring its significance for environmental monitoring. Further research on the mechanisms and consequences of heavy metal toxicity in bryophytes is essential for a comprehensive understanding of this critical issue.