Preparation and performance study of waterproof and breathable layer of alginate/aramid-based fabrics and flame-retardant multilayer combination.

IF 1.8 4区 化学 Q3 POLYMER SCIENCE
Designed Monomers and Polymers Pub Date : 2024-02-19 eCollection Date: 2024-01-01 DOI:10.1080/15685551.2024.2301804
Xiaoxiao Chen, Min Li, Miao Yu, Yutian Li
{"title":"Preparation and performance study of waterproof and breathable layer of alginate/aramid-based fabrics and flame-retardant multilayer combination.","authors":"Xiaoxiao Chen, Min Li, Miao Yu, Yutian Li","doi":"10.1080/15685551.2024.2301804","DOIUrl":null,"url":null,"abstract":"<p><p>Alginate fibers have excellent flame-retardant properties and make up for other material defects by blending. To investigate the influence of the blending ratio of alginate fibers on the flame-retardant properties of waterproof and breathable layers for firefighting suits, this paper utilizes the needle-punching and hot-pressing nonwoven reinforcement processes to prepare waterproof and breathable layers based on alginate/aramid base cloths and conducts a series of performance tests on them. The results show that the char residue content of alginate blended base cloth is significantly improved relative to pure aramid, and the addition of alginate fibers to the base cloth of the waterproof and breathable layer improves its flame retardancy and thermal stability. The overall performance of the alginate/aramid blended base fabric waterproof and breathable layer was better than that of the aramid-based waterproof and breathable layer. Moreover, in the flame-retardant multilayer fabric system for firefighting apparel, the multilayer fabric system containing the alginate/aramid-based waterproof and breathable layer showed higher thermal protection performance. Therefore, the alginate/aramid-based waterproof and breathable layer can enhance the overall flame-retardant performance of firefighting clothing to a certain extent.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"27 1","pages":"1-14"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878337/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2024.2301804","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Alginate fibers have excellent flame-retardant properties and make up for other material defects by blending. To investigate the influence of the blending ratio of alginate fibers on the flame-retardant properties of waterproof and breathable layers for firefighting suits, this paper utilizes the needle-punching and hot-pressing nonwoven reinforcement processes to prepare waterproof and breathable layers based on alginate/aramid base cloths and conducts a series of performance tests on them. The results show that the char residue content of alginate blended base cloth is significantly improved relative to pure aramid, and the addition of alginate fibers to the base cloth of the waterproof and breathable layer improves its flame retardancy and thermal stability. The overall performance of the alginate/aramid blended base fabric waterproof and breathable layer was better than that of the aramid-based waterproof and breathable layer. Moreover, in the flame-retardant multilayer fabric system for firefighting apparel, the multilayer fabric system containing the alginate/aramid-based waterproof and breathable layer showed higher thermal protection performance. Therefore, the alginate/aramid-based waterproof and breathable layer can enhance the overall flame-retardant performance of firefighting clothing to a certain extent.

藻酸盐/芳纶基织物防水透气层和阻燃多层组合的制备与性能研究。
海藻酸纤维具有优异的阻燃性能,可通过混纺弥补其他材料的缺陷。为了研究海藻酸纤维的混纺比例对消防服防水透气层阻燃性能的影响,本文利用针刺和热压无纺布加固工艺制备了基于海藻酸/芳纶基布的防水透气层,并对其进行了一系列性能测试。结果表明,与纯芳纶相比,海藻酸盐混纺基布的炭残渣含量明显提高,防水透气层基布中添加海藻酸盐纤维后,其阻燃性和热稳定性均得到改善。海藻酸盐/芳纶混纺基布防水透气层的整体性能优于芳纶基防水透气层。此外,在用于消防服的阻燃多层织物系统中,含有藻酸盐/芳纶基防水透气层的多层织物系统显示出更高的热防护性能。因此,藻酸盐/芳纶基防水透气层可在一定程度上提高消防服的整体阻燃性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Designed Monomers and Polymers
Designed Monomers and Polymers 化学-高分子科学
CiteScore
3.30
自引率
0.00%
发文量
28
审稿时长
2.1 months
期刊介绍: Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work. The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications. DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to: -macromolecular science, initiators, macroinitiators for macromolecular design -kinetics, mechanism and modelling aspects of polymerization -new methods of synthesis of known monomers -new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization) -functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers -new polymeric materials with biomedical applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信