Yusha Tang, Huaiqiang Sun, Chris Plummer, Simon J Vogrin, Hua Li, Yajiao Li, Lei Chen
{"title":"Association between patent foramen ovale and migraine: evidence from a resting-state fMRI study.","authors":"Yusha Tang, Huaiqiang Sun, Chris Plummer, Simon J Vogrin, Hua Li, Yajiao Li, Lei Chen","doi":"10.1007/s11682-024-00868-9","DOIUrl":null,"url":null,"abstract":"<p><p>A relationship between migraine without aura (MO) and patent foramen ovale (PFO) has been observed, but the neural basis underlying this relationship remains elusive. Utilizing independent component analysis via functional magnetic resonance imaging, we examined functional connectivity (FC) within and across networks in 146 patients with MO (75 patients with and 71 patients without PFO) and 70 healthy controls (35 patients each with and without PFO) to elucidate the individual effects of MO and PFO, as well as their interaction, on brain functional networks. The main effect of PFO manifested exclusively in the FC among the visual, auditory, default mode, dorsal attention and salience networks. Furthermore, the interaction effect between MO and PFO was discerned in brain clusters of the left frontoparietal network and lingual gyrus network, as well as the internetwork FC between the left frontoparietal network and the default mode network (DMN), the occipital pole and medial visual networks, and the dorsal attention and salience networks. Our findings suggest that the presence of a PFO shunt in patients with MO is accompanied by various FC changes within and across networks. These changes elucidate the intricate mechanisms linked to PFO-associated migraines and provide a basis for identifying novel noninvasive biomarkers.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364569/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11682-024-00868-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
A relationship between migraine without aura (MO) and patent foramen ovale (PFO) has been observed, but the neural basis underlying this relationship remains elusive. Utilizing independent component analysis via functional magnetic resonance imaging, we examined functional connectivity (FC) within and across networks in 146 patients with MO (75 patients with and 71 patients without PFO) and 70 healthy controls (35 patients each with and without PFO) to elucidate the individual effects of MO and PFO, as well as their interaction, on brain functional networks. The main effect of PFO manifested exclusively in the FC among the visual, auditory, default mode, dorsal attention and salience networks. Furthermore, the interaction effect between MO and PFO was discerned in brain clusters of the left frontoparietal network and lingual gyrus network, as well as the internetwork FC between the left frontoparietal network and the default mode network (DMN), the occipital pole and medial visual networks, and the dorsal attention and salience networks. Our findings suggest that the presence of a PFO shunt in patients with MO is accompanied by various FC changes within and across networks. These changes elucidate the intricate mechanisms linked to PFO-associated migraines and provide a basis for identifying novel noninvasive biomarkers.