Trends in AI-powered Classification of Thyroid Neoplasms Based on Histopathology Images - a Systematic Review.

Q2 Medicine
Haitham Kussaibi, Noor Alsafwani
{"title":"Trends in AI-powered Classification of Thyroid Neoplasms Based on Histopathology Images - a Systematic Review.","authors":"Haitham Kussaibi, Noor Alsafwani","doi":"10.5455/aim.2023.31.280-286","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Assessment of thyroid nodules histopathology using AI is crucial for an accurate diagnosis. This systematic review analyzes recent works employing deep learning approaches for classifying thyroid nodules based on histopathology images, evaluating their performance, and identifying limitations.</p><p><strong>Methods: </strong>Eligibility criteria focused on peer-reviewed English papers published in the last 5 years, applying deep learning to categorize thyroid histopathology images. The PubMed database was searched using relevant keyword combinations.</p><p><strong>Results: </strong>Out of 103 articles, 11 studies met inclusion criteria. They used convolutional neural networks to classify thyroid neoplasm. Most studies aimed for basic tumor subtyping; however, 3 studies targeted the prediction of tumor-associated mutation. Accuracy ranged from 77% to 100%, with most over 90%.</p><p><strong>Discussion: </strong>The findings from our analysis reveal the effectiveness of deep learning in identifying discriminative morphological patterns from histopathology images, thus enhancing the accuracy of thyroid nodule histopathological classification. Key limitations were small sample sizes, subjective annotation, and limited dataset diversity. Further research with larger diverse datasets, model optimization, and real-world validation is essential to translate these tools into clinical practice.</p>","PeriodicalId":7074,"journal":{"name":"Acta Informatica Medica","volume":"31 4","pages":"280-286"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10875959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica Medica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/aim.2023.31.280-286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Assessment of thyroid nodules histopathology using AI is crucial for an accurate diagnosis. This systematic review analyzes recent works employing deep learning approaches for classifying thyroid nodules based on histopathology images, evaluating their performance, and identifying limitations.

Methods: Eligibility criteria focused on peer-reviewed English papers published in the last 5 years, applying deep learning to categorize thyroid histopathology images. The PubMed database was searched using relevant keyword combinations.

Results: Out of 103 articles, 11 studies met inclusion criteria. They used convolutional neural networks to classify thyroid neoplasm. Most studies aimed for basic tumor subtyping; however, 3 studies targeted the prediction of tumor-associated mutation. Accuracy ranged from 77% to 100%, with most over 90%.

Discussion: The findings from our analysis reveal the effectiveness of deep learning in identifying discriminative morphological patterns from histopathology images, thus enhancing the accuracy of thyroid nodule histopathological classification. Key limitations were small sample sizes, subjective annotation, and limited dataset diversity. Further research with larger diverse datasets, model optimization, and real-world validation is essential to translate these tools into clinical practice.

基于组织病理学图像的甲状腺肿瘤人工智能分类趋势--系统性综述。
背景:利用人工智能评估甲状腺结节组织病理学对准确诊断至关重要。这篇系统性综述分析了近期采用深度学习方法根据组织病理学图像对甲状腺结节进行分类的工作,评估了这些方法的性能,并指出了其局限性:筛选标准主要针对过去5年中发表的、应用深度学习对甲状腺组织病理学图像进行分类的同行评审英文论文。使用相关关键词组合对PubMed数据库进行了检索:在103篇文章中,有11项研究符合纳入标准。这些研究使用卷积神经网络对甲状腺肿瘤进行分类。大多数研究旨在进行基本的肿瘤亚型分类;但有 3 项研究以预测肿瘤相关突变为目标。准确率从77%到100%不等,大多数超过90%:我们的分析结果表明,深度学习能有效识别组织病理学图像中的辨别形态模式,从而提高甲状腺结节组织病理学分类的准确性。主要的局限性在于样本量小、主观注释和数据集多样性有限。要将这些工具应用到临床实践中,必须对更大的多样化数据集、模型优化和实际验证进行进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Informatica Medica
Acta Informatica Medica Medicine-Medicine (all)
CiteScore
2.90
自引率
0.00%
发文量
37
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信