{"title":"Regulation of Intestinal Flora and Immune Response by Cyanidin Exhibits Protective Effect against Type-2 Diabetes in Rat Model","authors":"Qingyan Lu, Qiannan Yan, Xiaojie Li","doi":"10.1134/S1607672923600422","DOIUrl":null,"url":null,"abstract":"<p>In the current study the effects of metformin and cyanidin on the immune system and intestinal flora in rats with type-2 diabetes was investigated. The findings showed that metformin or cyanidin treatment considerably reduced the rise in body weight and glucose levels induced by type-2 diabetes. The type-2 diabetic rats’ glucose tolerance was significantly increased by cyanidin administration comparable to that of metformin. Cyanidin administration resulted in a significant reduction in serum cholesterol and low-density lipoprotein (LDL) levels in rats with type-2 diabetes. Treatment with cyanidin significantly increased the ratio of high-density lipoprotein to low-density lipoprotein in type-2 diabetes rats. Cyanidin administration significantly raised the ratio of <i>Firmicutes</i> to <i>Bacteroidetes</i> in the fecal samples of type-2 diabetic rats compared to the model group. In comparison to the model group, it also significantly raised the levels of <i>Lactobacillus</i> <i>intestinalis</i>, <i>Lactobacillus gasseri</i>, and <i>Lactobacillus reuteri</i> in the type-2 diabetes rats. In type-2 diabetes rat fecal samples, the abundance of <i>Christensenellaceae</i> significantly increased while <i>Enterobacteriaceae</i> and <i>Proteobacteria</i> were found to decrease upon cyanidin administration. Furthermore, cyanidin administration to the rats with type-2 diabetes significantly improved the glucose homeostasis. In conclusion, the study demonstrates that cyanidin enhances glucose homeostasis in rats with type-2 diabetes, potentially through controlling intestinal flora. Thus, cyanidin may be looked into more as a possible therapeutic agent for type 2 diabetes.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S1607672923600422","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the current study the effects of metformin and cyanidin on the immune system and intestinal flora in rats with type-2 diabetes was investigated. The findings showed that metformin or cyanidin treatment considerably reduced the rise in body weight and glucose levels induced by type-2 diabetes. The type-2 diabetic rats’ glucose tolerance was significantly increased by cyanidin administration comparable to that of metformin. Cyanidin administration resulted in a significant reduction in serum cholesterol and low-density lipoprotein (LDL) levels in rats with type-2 diabetes. Treatment with cyanidin significantly increased the ratio of high-density lipoprotein to low-density lipoprotein in type-2 diabetes rats. Cyanidin administration significantly raised the ratio of Firmicutes to Bacteroidetes in the fecal samples of type-2 diabetic rats compared to the model group. In comparison to the model group, it also significantly raised the levels of Lactobacillusintestinalis, Lactobacillus gasseri, and Lactobacillus reuteri in the type-2 diabetes rats. In type-2 diabetes rat fecal samples, the abundance of Christensenellaceae significantly increased while Enterobacteriaceae and Proteobacteria were found to decrease upon cyanidin administration. Furthermore, cyanidin administration to the rats with type-2 diabetes significantly improved the glucose homeostasis. In conclusion, the study demonstrates that cyanidin enhances glucose homeostasis in rats with type-2 diabetes, potentially through controlling intestinal flora. Thus, cyanidin may be looked into more as a possible therapeutic agent for type 2 diabetes.
期刊介绍:
Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.