A fatigue model under Cosserat peridynamic framework for concrete fatigue cracking

IF 2.2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xianyang Guo, Ji Wan, Xihua Chu, Shan Li
{"title":"A fatigue model under Cosserat peridynamic framework for concrete fatigue cracking","authors":"Xianyang Guo,&nbsp;Ji Wan,&nbsp;Xihua Chu,&nbsp;Shan Li","doi":"10.1007/s10704-023-00757-0","DOIUrl":null,"url":null,"abstract":"<div><p>A novel fatigue model under Cosserat peridynamic framework is proposed to investigate concrete fatigue performance. In this model, a novel cyclic bond failure criterion is established to measure the combined tension/compressive-shear fatigue failure in concrete, which is derived from the Bresler-Pister criterion. Three benchmarks with different fatigue crack modes in concrete are designed. Results show that the mode I and mixed mode I-II fatigue crack patterns are predicted. In the three-point-bend beam fatigue test, the numerical result matches well with the experimental result, in the uniaxial compressive fatigue test, the effects of Cosserat parameters on fatigue crack patterns are discussed. Results found that the Cosserat parameters reflect the effects of concrete microstructures on crack patterns, and the larger Cosserat shear modulus accelerates the fatigue crack propagation process.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 1","pages":"1 - 22"},"PeriodicalIF":2.2000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00757-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel fatigue model under Cosserat peridynamic framework is proposed to investigate concrete fatigue performance. In this model, a novel cyclic bond failure criterion is established to measure the combined tension/compressive-shear fatigue failure in concrete, which is derived from the Bresler-Pister criterion. Three benchmarks with different fatigue crack modes in concrete are designed. Results show that the mode I and mixed mode I-II fatigue crack patterns are predicted. In the three-point-bend beam fatigue test, the numerical result matches well with the experimental result, in the uniaxial compressive fatigue test, the effects of Cosserat parameters on fatigue crack patterns are discussed. Results found that the Cosserat parameters reflect the effects of concrete microstructures on crack patterns, and the larger Cosserat shear modulus accelerates the fatigue crack propagation process.

Abstract Image

混凝土疲劳开裂的 Cosserat 周动态框架下的疲劳模型
摘要 为研究混凝土的疲劳性能,提出了 Cosserat 周动态框架下的新型疲劳模型。在该模型中,建立了一种新的循环粘结破坏准则,用于测量混凝土的拉伸/压缩-剪切组合疲劳破坏,该准则源于布雷斯勒-皮斯特准则。设计了三种不同疲劳裂缝模式的混凝土基准。结果表明,模式 I 和模式 I-II 混合疲劳裂缝模式均可预测。在三点弯曲梁疲劳试验中,数值结果与试验结果吻合良好;在单轴受压疲劳试验中,讨论了 Cosserat 参数对疲劳裂纹模式的影响。结果发现,Cosserat 参数反映了混凝土微结构对裂缝形态的影响,Cosserat 剪切模量越大,疲劳裂缝扩展过程越快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fracture
International Journal of Fracture 物理-材料科学:综合
CiteScore
4.80
自引率
8.00%
发文量
74
审稿时长
13.5 months
期刊介绍: The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications. The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged. In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信