Existence of positive solutions for fractional delayed evolution equations of order $$\gamma \in (1,2)$$ via measure of non-compactness

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"Existence of positive solutions for fractional delayed evolution equations of order $$\\gamma \\in (1,2)$$ via measure of non-compactness","authors":"","doi":"10.1007/s13540-024-00248-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The purpose of this paper is to consider the fractional delayed evolution equation of order <span> <span>\\(\\gamma \\in (1,2)\\)</span> </span> in ordered Banach space. In the absence of assumptions about the compactness of cosine families or related sine families, the existence results of positive solutions are studied by using some fixed point theorems and monotone iterative method under the conditions that nonlinear function satisfies the non-compactness measure conditions and some appropriate growth conditions or order conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00248-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this paper is to consider the fractional delayed evolution equation of order \(\gamma \in (1,2)\) in ordered Banach space. In the absence of assumptions about the compactness of cosine families or related sine families, the existence results of positive solutions are studied by using some fixed point theorems and monotone iterative method under the conditions that nonlinear function satisfies the non-compactness measure conditions and some appropriate growth conditions or order conditions.

通过非紧凑性度量看 $$\gamma \in (1,2)$$ 阶分数延迟演化方程正解的存在性
摘要 本文的目的是考虑有序巴纳赫空间中的阶\(\gamma \in (1,2)\)分式延迟演化方程。在没有余弦族或相关正弦族紧凑性假设的情况下,在非线性函数满足非紧凑性度量条件和一些适当的增长条件或阶次条件的条件下,利用一些定点定理和单调迭代法研究了正解的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信