Abdominal Body Composition Reference Ranges and Association With Chronic Conditions in an Age- and Sex-Stratified Representative Sample of a Geographically Defined American Population.
Alexander D Weston, Brandon R Grossardt, Hillary W Garner, Timothy L Kline, Alanna M Chamberlain, Alina M Allen, Bradley J Erickson, Walter A Rocca, Andrew D Rule, Jennifer L St Sauver
{"title":"Abdominal Body Composition Reference Ranges and Association With Chronic Conditions in an Age- and Sex-Stratified Representative Sample of a Geographically Defined American Population.","authors":"Alexander D Weston, Brandon R Grossardt, Hillary W Garner, Timothy L Kline, Alanna M Chamberlain, Alina M Allen, Bradley J Erickson, Walter A Rocca, Andrew D Rule, Jennifer L St Sauver","doi":"10.1093/gerona/glae055","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Body composition can be accurately quantified from abdominal computed tomography (CT) exams and is a predictor for the development of aging-related conditions and for mortality. However, reference ranges for CT-derived body composition measures of obesity, sarcopenia, and bone loss have yet to be defined in the general population.</p><p><strong>Methods: </strong>We identified a population-representative sample of 4 900 persons aged 20 to 89 years who underwent an abdominal CT exam from 2010 to 2020. The sample was constructed using propensity score matching an age and sex stratified sample of persons residing in the 27-county region of Southern Minnesota and Western Wisconsin. The matching included race, ethnicity, education level, region of residence, and the presence of 20 chronic conditions. We used a validated deep learning based algorithm to calculate subcutaneous adipose tissue area, visceral adipose tissue area, skeletal muscle area, skeletal muscle density, vertebral bone area, and vertebral bone density from a CT abdominal section.</p><p><strong>Results: </strong>We report CT-based body composition reference ranges on 4 649 persons representative of our geographic region. Older age was associated with a decrease in skeletal muscle area and density, and an increase in visceral adiposity. All chronic conditions were associated with a statistically significant difference in at least one body composition biomarker. The presence of a chronic condition was generally associated with greater subcutaneous and visceral adiposity, and lower muscle density and vertebrae bone density.</p><p><strong>Conclusions: </strong>We report reference ranges for CT-based body composition biomarkers in a population-representative cohort of 4 649 persons by age, sex, body mass index, and chronic conditions.</p>","PeriodicalId":94243,"journal":{"name":"The journals of gerontology. Series A, Biological sciences and medical sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949446/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journals of gerontology. Series A, Biological sciences and medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glae055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Body composition can be accurately quantified from abdominal computed tomography (CT) exams and is a predictor for the development of aging-related conditions and for mortality. However, reference ranges for CT-derived body composition measures of obesity, sarcopenia, and bone loss have yet to be defined in the general population.
Methods: We identified a population-representative sample of 4 900 persons aged 20 to 89 years who underwent an abdominal CT exam from 2010 to 2020. The sample was constructed using propensity score matching an age and sex stratified sample of persons residing in the 27-county region of Southern Minnesota and Western Wisconsin. The matching included race, ethnicity, education level, region of residence, and the presence of 20 chronic conditions. We used a validated deep learning based algorithm to calculate subcutaneous adipose tissue area, visceral adipose tissue area, skeletal muscle area, skeletal muscle density, vertebral bone area, and vertebral bone density from a CT abdominal section.
Results: We report CT-based body composition reference ranges on 4 649 persons representative of our geographic region. Older age was associated with a decrease in skeletal muscle area and density, and an increase in visceral adiposity. All chronic conditions were associated with a statistically significant difference in at least one body composition biomarker. The presence of a chronic condition was generally associated with greater subcutaneous and visceral adiposity, and lower muscle density and vertebrae bone density.
Conclusions: We report reference ranges for CT-based body composition biomarkers in a population-representative cohort of 4 649 persons by age, sex, body mass index, and chronic conditions.