{"title":"Colorful image reconstruction from neuromorphic event cameras with biologically inspired deep color fusion neural networks.","authors":"Hadar Cohen-Duwek, Elishai Ezra Tsur","doi":"10.1088/1748-3190/ad2a7c","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromorphic event-based cameras communicate transients in luminance instead of frames, providing visual information with a fine temporal resolution, high dynamic range and high signal-to-noise ratio. Enriching event data with color information allows for the reconstruction of colorful frame-like intensity maps, supporting improved performance and visually appealing results in various computer vision tasks. In this work, we simulated a biologically inspired color fusion system featuring a three-stage convolutional neural network for reconstructing color intensity maps from event data and sparse color cues. While current approaches for color fusion use full RGB frames in high resolution, our design uses event data and low-spatial and tonal-resolution quantized color cues, providing a high-performing small model for efficient colorful image reconstruction. The proposed model outperforms existing coloring schemes in terms of SSIM, LPIPS, PSNR, and CIEDE2000 metrics. We demonstrate that auxiliary limited color information can be used in conjunction with event data to successfully reconstruct both color and intensity frames, paving the way for more efficient hardware designs.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad2a7c","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuromorphic event-based cameras communicate transients in luminance instead of frames, providing visual information with a fine temporal resolution, high dynamic range and high signal-to-noise ratio. Enriching event data with color information allows for the reconstruction of colorful frame-like intensity maps, supporting improved performance and visually appealing results in various computer vision tasks. In this work, we simulated a biologically inspired color fusion system featuring a three-stage convolutional neural network for reconstructing color intensity maps from event data and sparse color cues. While current approaches for color fusion use full RGB frames in high resolution, our design uses event data and low-spatial and tonal-resolution quantized color cues, providing a high-performing small model for efficient colorful image reconstruction. The proposed model outperforms existing coloring schemes in terms of SSIM, LPIPS, PSNR, and CIEDE2000 metrics. We demonstrate that auxiliary limited color information can be used in conjunction with event data to successfully reconstruct both color and intensity frames, paving the way for more efficient hardware designs.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.