Christopher James Keating, Rials J Hester, Tanner A Thorsen
{"title":"High cadence cycling not high work rate, increases gait velocity post-exercise.","authors":"Christopher James Keating, Rials J Hester, Tanner A Thorsen","doi":"10.1080/14763141.2024.2315245","DOIUrl":null,"url":null,"abstract":"<p><p>Gait velocity, or walking speed, has been referred to as the sixth vital sign, and research suggests that it is highly sensitive to change. Previous research has demonstrated the utility of cycling to improve gait parameters and in particular gait velocity in a variety of populations. However, it is unclear if the benefits from cycling to gait velocity stem from increased cadence, increased work rate, or the interaction between them. Therefore, the objective of the current research was to explicitly test the relationship between cycling work rate, cycling cadence, and gait velocity. 45 recreationally active young adults were randomly assigned to cycle at a normalised cadence and work rate, a higher cadence, or a higher work rate (CONTROL, FAST, HARD). All participants completed two ten-metre walk tests (10 MWT) pre- and post-cycling intervention. There was a significant interaction between group and time and post hoc comparisons showed that the FAST group walked significantly faster than the HARD group post-cycling. These results support the hypothesis that cycling at a cadence greater than the comfortable walking cadence, and not cycling at an increased work rate, increased gait velocity post-exercise for all members of our sample of healthy young adults.</p>","PeriodicalId":49482,"journal":{"name":"Sports Biomechanics","volume":" ","pages":"1-15"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2315245","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gait velocity, or walking speed, has been referred to as the sixth vital sign, and research suggests that it is highly sensitive to change. Previous research has demonstrated the utility of cycling to improve gait parameters and in particular gait velocity in a variety of populations. However, it is unclear if the benefits from cycling to gait velocity stem from increased cadence, increased work rate, or the interaction between them. Therefore, the objective of the current research was to explicitly test the relationship between cycling work rate, cycling cadence, and gait velocity. 45 recreationally active young adults were randomly assigned to cycle at a normalised cadence and work rate, a higher cadence, or a higher work rate (CONTROL, FAST, HARD). All participants completed two ten-metre walk tests (10 MWT) pre- and post-cycling intervention. There was a significant interaction between group and time and post hoc comparisons showed that the FAST group walked significantly faster than the HARD group post-cycling. These results support the hypothesis that cycling at a cadence greater than the comfortable walking cadence, and not cycling at an increased work rate, increased gait velocity post-exercise for all members of our sample of healthy young adults.
期刊介绍:
Sports Biomechanics is the Thomson Reuters listed scientific journal of the International Society of Biomechanics in Sports (ISBS). The journal sets out to generate knowledge to improve human performance and reduce the incidence of injury, and to communicate this knowledge to scientists, coaches, clinicians, teachers, and participants. The target performance realms include not only the conventional areas of sports and exercise, but also fundamental motor skills and other highly specialized human movements such as dance (both sport and artistic).
Sports Biomechanics is unique in its emphasis on a broad biomechanical spectrum of human performance including, but not limited to, technique, skill acquisition, training, strength and conditioning, exercise, coaching, teaching, equipment, modeling and simulation, measurement, and injury prevention and rehabilitation. As well as maintaining scientific rigour, there is a strong editorial emphasis on ''reader friendliness''. By emphasising the practical implications and applications of research, the journal seeks to benefit practitioners directly.
Sports Biomechanics publishes papers in four sections: Original Research, Reviews, Teaching, and Methods and Theoretical Perspectives.