{"title":"Methyl gallate from <i>Camellia nitidissima</i> Chi flowers reduces quorum sensing related virulence and biofilm formation against <i>Aeromonas hydrophila</i>.","authors":"Huan Jiang, Zhennan Wang, Ai-Qun Jia","doi":"10.1080/08927014.2024.2316611","DOIUrl":null,"url":null,"abstract":"<p><p><i>Aeromonas hydrophila</i>, a Gram-negative zoonotic bacterium, causes high mortality in fish farming and immunocompromised patients. This study aimed to extract methyl gallate (MG) from the flowers of <i>Camellia nitidissima</i> Chi and evaluate its potential as a quorum sensing inhibitor (QSI) against <i>Aeromonas hydrophila</i> SHAe 115. MG reduced QS-associated virulence factors, including hemolysis, protease, and lipase, while impairing swimming motility and biofilm formation. Additionally, MG down-regulated positive regulatory genes (<i>ahyR</i>, <i>fleQ</i>) and up-regulated negative regulators (<i>litR</i>, <i>fleN</i>). This highlights MG's promise as a potent QSI for <i>A. hydrophila</i> SHAe 115, advancing strategies against infections in aquaculture and human health.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2024.2316611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Aeromonas hydrophila, a Gram-negative zoonotic bacterium, causes high mortality in fish farming and immunocompromised patients. This study aimed to extract methyl gallate (MG) from the flowers of Camellia nitidissima Chi and evaluate its potential as a quorum sensing inhibitor (QSI) against Aeromonas hydrophila SHAe 115. MG reduced QS-associated virulence factors, including hemolysis, protease, and lipase, while impairing swimming motility and biofilm formation. Additionally, MG down-regulated positive regulatory genes (ahyR, fleQ) and up-regulated negative regulators (litR, fleN). This highlights MG's promise as a potent QSI for A. hydrophila SHAe 115, advancing strategies against infections in aquaculture and human health.