Bharati Naik, Jayaprakash Sasikumar, Vishal B, Shankar Prasad Das
{"title":"Fungal coexistence in the skin mycobiome: a study involving Malassezia, Candida, and Rhodotorula.","authors":"Bharati Naik, Jayaprakash Sasikumar, Vishal B, Shankar Prasad Das","doi":"10.1186/s13568-024-01674-8","DOIUrl":null,"url":null,"abstract":"<p><p>Evidence of fungal coexistence in humans points towards fungal adaptation to the host environment, like the skin. The human commensal Malassezia has evolved, especially residing in sebum-rich areas of the mammalian body where it can get the necessary nutrition for its survival. This fungus is primarily responsible for skin diseases like Pityriasis versicolor (PV), characterized by hypo or hyperpigmented skin discoloration and erythematous macules. In this manuscript, we report a 19-year-old healthy female who presented with a one-year history of reddish, hypopigmented, asymptomatic lesions over the chest and a raised erythematous lesion over the face. Upon clinical observation, the patient displayed multiple erythematous macules and erythematous papules over the bilateral malar area of the face, along with multiple hypopigmented scaly macules present on the chest and back. Based on the above clinical findings, a diagnosis of PV and Acne vulgaris (AV) was made. Interestingly, the patient was immunocompetent and didn't have any comorbidities. Upon isolation of skin scrapings and post-culturing, we found the existence of three fungal genera in the same region of the patient's body. We further went on to confirm the identity of the particular species and found it to represent Malassezia, Rhodotorula, and Candida. We report how Malassezia, the predominant microbial resident skin fungus, coexists with other fungal members of the skin mycobiome. This study on an applied aspect of microbiology also shows how important it is to identify the fungal organism associated with skin infections so that appropriate therapeutics can be advised to avoid cases of relapse.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"26"},"PeriodicalIF":3.5000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879058/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01674-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evidence of fungal coexistence in humans points towards fungal adaptation to the host environment, like the skin. The human commensal Malassezia has evolved, especially residing in sebum-rich areas of the mammalian body where it can get the necessary nutrition for its survival. This fungus is primarily responsible for skin diseases like Pityriasis versicolor (PV), characterized by hypo or hyperpigmented skin discoloration and erythematous macules. In this manuscript, we report a 19-year-old healthy female who presented with a one-year history of reddish, hypopigmented, asymptomatic lesions over the chest and a raised erythematous lesion over the face. Upon clinical observation, the patient displayed multiple erythematous macules and erythematous papules over the bilateral malar area of the face, along with multiple hypopigmented scaly macules present on the chest and back. Based on the above clinical findings, a diagnosis of PV and Acne vulgaris (AV) was made. Interestingly, the patient was immunocompetent and didn't have any comorbidities. Upon isolation of skin scrapings and post-culturing, we found the existence of three fungal genera in the same region of the patient's body. We further went on to confirm the identity of the particular species and found it to represent Malassezia, Rhodotorula, and Candida. We report how Malassezia, the predominant microbial resident skin fungus, coexists with other fungal members of the skin mycobiome. This study on an applied aspect of microbiology also shows how important it is to identify the fungal organism associated with skin infections so that appropriate therapeutics can be advised to avoid cases of relapse.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.