Tao Wang, Zezhong Shi, Faxing Wang, Jiarui He, Yiren Zhong, Yuan Ma, Zhi Zhu, Xin-Bing Cheng, Kenneth I. Ozoemena and Yuping Wu
{"title":"Advanced bifunctional catalyst design for rechargeable zinc–air batteries","authors":"Tao Wang, Zezhong Shi, Faxing Wang, Jiarui He, Yiren Zhong, Yuan Ma, Zhi Zhu, Xin-Bing Cheng, Kenneth I. Ozoemena and Yuping Wu","doi":"10.1039/D4EY00014E","DOIUrl":null,"url":null,"abstract":"<p >Zinc–air batteries have attracted more attention due to their high energy density, high safety, low cost, and environmental friendliness. Nevertheless, sluggish oxygen reaction kinetics at the air electrode seriously compromises their power density and cycling stability. As one of the main components, the catalyst significantly impacts the performance of zinc–air batteries. Finding high-performance bifunctional catalysts for both the oxygen reduction reaction and oxygen evolution reaction is of great importance for the practical application of zinc–air batteries. In this review, the history, merits and challenges of zinc–air batteries are introduced, the working principle of zinc–air batteries and the mechanisms of ORR and OER in air electrodes are analyzed deeply, and the research status of bifunctional catalysts that promote both ORR and OER kinetics is systematically reviewed. Finally, the pending problems that need to be solved in future research and the practical application of bifunctional catalysts in zinc–air batteries are discussed. This review aims to provide a valuable reference for the development of bifunctional catalysts for zinc–air batteries.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ey/d4ey00014e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ey/d4ey00014e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Zinc–air batteries have attracted more attention due to their high energy density, high safety, low cost, and environmental friendliness. Nevertheless, sluggish oxygen reaction kinetics at the air electrode seriously compromises their power density and cycling stability. As one of the main components, the catalyst significantly impacts the performance of zinc–air batteries. Finding high-performance bifunctional catalysts for both the oxygen reduction reaction and oxygen evolution reaction is of great importance for the practical application of zinc–air batteries. In this review, the history, merits and challenges of zinc–air batteries are introduced, the working principle of zinc–air batteries and the mechanisms of ORR and OER in air electrodes are analyzed deeply, and the research status of bifunctional catalysts that promote both ORR and OER kinetics is systematically reviewed. Finally, the pending problems that need to be solved in future research and the practical application of bifunctional catalysts in zinc–air batteries are discussed. This review aims to provide a valuable reference for the development of bifunctional catalysts for zinc–air batteries.
锌-空气电池因其高能量密度、高安全性、低成本和环保性而受到越来越多的关注。然而,空气电极上缓慢的氧气反应动力学严重影响了其功率密度和循环稳定性。催化剂作为主要成分之一,对锌-空气电池的性能有重大影响。寻找既能进行氧还原反应又能进行氧进化反应的高性能双功能催化剂对锌-空气电池的实际应用具有重要意义。本综述介绍了锌-空气电池的发展历史、优点和挑战,深入分析了锌-空气电池的工作原理和空气电极中 ORR 和 OER 的机理,系统综述了同时促进 ORR 和 OER 动力学的双功能催化剂的研究现状。最后,展望了双功能催化剂在未来研究中亟待解决的问题以及在锌-空气电池中的实际应用。本综述旨在为锌-空气电池中双功能催化剂的开发提供有价值的参考。