{"title":"Fractional Order Complementary Non-singular Terminal Sliding Mode Control of PMSM Based on Neural Network","authors":"Jinliang Zhang, Dunbin Zhu, Wei Jian, Wentao Hu, Guosheng Peng, Yufeng Chen, Zhihu Wang","doi":"10.1007/s12239-024-00015-9","DOIUrl":null,"url":null,"abstract":"<p>Aiming at the sensitivity problems of uncertain factors such as parameter variation, external disturbance and friction for the permanent magnet synchronous motor control system of electric vehicle, a fractional order complementary non-singular terminal sliding mode control method based on neural network is proposed. The mathematical model of permanent magnet synchronous motor with uncertain factors was established. The sliding mode controller was designed by combining the generalized sliding mode surface and the complementary sliding mode surface, which shortened the arrival time from the state trajectory to sliding mode surface. The fractional calculus operator with filtering characteristics was used to improve the position tracking accuracy and reduce the chattering. As for the variety of uncertain disturbances, the neural network was used to estimate the system total uncertainty and compensate online to further improve the dynamic response ability and anti-interference ability. Finally, the simulation results verify the effectiveness and feasibility of the proposed method, which can provide theoretical and technical support for improving the control accuracy of permanent magnet synchronous motor and the development of electric vehicles.</p>","PeriodicalId":50338,"journal":{"name":"International Journal of Automotive Technology","volume":"49 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00015-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aiming at the sensitivity problems of uncertain factors such as parameter variation, external disturbance and friction for the permanent magnet synchronous motor control system of electric vehicle, a fractional order complementary non-singular terminal sliding mode control method based on neural network is proposed. The mathematical model of permanent magnet synchronous motor with uncertain factors was established. The sliding mode controller was designed by combining the generalized sliding mode surface and the complementary sliding mode surface, which shortened the arrival time from the state trajectory to sliding mode surface. The fractional calculus operator with filtering characteristics was used to improve the position tracking accuracy and reduce the chattering. As for the variety of uncertain disturbances, the neural network was used to estimate the system total uncertainty and compensate online to further improve the dynamic response ability and anti-interference ability. Finally, the simulation results verify the effectiveness and feasibility of the proposed method, which can provide theoretical and technical support for improving the control accuracy of permanent magnet synchronous motor and the development of electric vehicles.
期刊介绍:
The International Journal of Automotive Technology has as its objective the publication and dissemination of original research in all fields of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING. It fosters thus the exchange of ideas among researchers in different parts of the world and also among researchers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Physics, Chemistry, Mechanics, Engineering Design and Materials Sciences, AUTOMOTIVE TECHNOLOGY is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from thermal engineering, flow analysis, structural analysis, modal analysis, control, vehicular electronics, mechatronis, electro-mechanical engineering, optimum design methods, ITS, and recycling. Interest extends from the basic science to technology applications with analytical, experimental and numerical studies.
The emphasis is placed on contributions that appear to be of permanent interest to research workers and engineers in the field. If furthering knowledge in the area of principal concern of the Journal, papers of primary interest to the innovative disciplines of AUTOMOTIVE TECHNOLOGY, SCIENCE and ENGINEERING may be published. Papers that are merely illustrations of established principles and procedures, even though possibly containing new numerical or experimental data, will generally not be published.
When outstanding advances are made in existing areas or when new areas have been developed to a definitive stage, special review articles will be considered by the editors.
No length limitations for contributions are set, but only concisely written papers are published. Brief articles are considered on the basis of technical merit.