Invariant Subspaces in Nonquasianalytic Spaces of Ω-Ultradifferentiable Functions on an Interval

IF 0.5 Q3 MATHEMATICS
{"title":"Invariant Subspaces in Nonquasianalytic Spaces of Ω-Ultradifferentiable Functions on an Interval","authors":"","doi":"10.3103/s1066369x23110014","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>In this paper we consider a weakened version of the spectral synthesis for the differentiation operator in nonquasianalytic spaces of ultradifferentiable functions. We deal with the widest possible class of spaces of ultradifferentiable functions among all known ones. Namely, these are spaces of Ω‑ultradifferentiable functions which have been recently introduced and explored by Abanin. For differentiation invariant subspaces in these spaces, we establish conditions of weak spectral synthesis. As an application, we prove that a kernel of a local convolution operator admits weak spectral synthesis. We also show that a conjunction of kernels of convolution operators admits weak spectral synthesis if all generating ultradistributions have the same support equaled to {0} and there exists one generated by an ultradistribution which characteristic function is a multiplier in the corresponding space of entire functions.</p> </span>","PeriodicalId":46110,"journal":{"name":"Russian Mathematics","volume":"12 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1066369x23110014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider a weakened version of the spectral synthesis for the differentiation operator in nonquasianalytic spaces of ultradifferentiable functions. We deal with the widest possible class of spaces of ultradifferentiable functions among all known ones. Namely, these are spaces of Ω‑ultradifferentiable functions which have been recently introduced and explored by Abanin. For differentiation invariant subspaces in these spaces, we establish conditions of weak spectral synthesis. As an application, we prove that a kernel of a local convolution operator admits weak spectral synthesis. We also show that a conjunction of kernels of convolution operators admits weak spectral synthesis if all generating ultradistributions have the same support equaled to {0} and there exists one generated by an ultradistribution which characteristic function is a multiplier in the corresponding space of entire functions.

区间上的Ω-Ultradifferentiable 函数的非等差数列空间中的不变子空间
摘要 在本文中,我们考虑了在超微分函数的非类比空间中微分算子的谱综合的弱化版本。在所有已知的超微分函数空间中,我们处理的是最广泛的一类。也就是阿巴宁最近提出并探索的Ω-超微分函数空间。对于这些空间中的微分不变子空间,我们建立了弱谱合成条件。作为应用,我们证明了局部卷积算子的内核允许弱谱合成。我们还证明,如果所有生成的超分布都有等于{0}的相同支持,并且存在一个由超分布生成的、其特征函数在相应的全函数空间中是乘数的超分布,那么卷积算子的内核的合集就承认弱谱合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Mathematics
Russian Mathematics MATHEMATICS-
CiteScore
0.90
自引率
25.00%
发文量
0
期刊介绍: Russian Mathematics  is a peer reviewed periodical that encompasses the most significant research in both pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信