{"title":"Biocontrol potential of Priestia megaterium YB-3 against Meloidogyne graminicola and its impact on the rhizosphere microbial community","authors":"Shan Ye, Yihang Ma, Siyu Zhou, Rui Yan, Zhuhong Yang, Zhong Ding","doi":"10.1007/s10340-024-01753-6","DOIUrl":null,"url":null,"abstract":"<p>Root-knot nematodes (<i>Meloidogyne</i> spp.) are highly destructive pests that cause enormous crop losses worldwide. With the increasing awareness of environmental protection, exploring the potential of biocontrol agents has become crucial for nematode management. <i>Priestia megaterium</i> YB-3 was originally isolated from rice rhizosphere soil. In vitro experiments with the fermentation supernatant of YB-3 exhibited up to 96.0% mortality of <i>M. graminicola</i> second-stage juveniles (J2) and 39.2% egg hatching inhibition rate at 48 h after treatment. In greenhouse and field experiments, the application of YB-3 significantly suppressed the gall index, final nematode and egg populations compared to the untreated control, while it promoted rice (<i>Oryza sativa</i>) growth. YB-3 showed consistently high biocontrol efficacy against <i>M. graminicola</i>. Moreover, YB-3 remarkably enhanced the expression of defence genes involved in salicylic acid (<i>OsNPR1</i>, <i>OsWRKY45, OsPR1a</i>), jasmonic acid (<i>OsJaMYB</i>, <i>OsAOS2</i>) and ethylene (<i>OsACS1</i>) signalling pathways at different levels. In addition, YB-3 steadily colonized rice rhizosphere soil at levels ranging from 3.54 × 10<sup>3</sup> to 9.08 × 10<sup>4</sup> cfu/g soil. High-throughput sequencing analysis showed that the application of YB-3 had no significant influence on the rice rhizosphere microbial community structure, and the taxa enriched in the YB-3 treatment were Acidobacteria, Bacteroidetes and Ascomycota. YB-3 effectively suppressed <i>M. graminicola</i> infection, possibly because it colonized the rice rhizosphere, induced plant resistance and increased the relative abundances of beneficial microorganisms. <i>Priestia megaterium</i> YB-3 could be a promising and safe biological component in the integrated management of <i>M. graminicola</i>.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"5 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01753-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Root-knot nematodes (Meloidogyne spp.) are highly destructive pests that cause enormous crop losses worldwide. With the increasing awareness of environmental protection, exploring the potential of biocontrol agents has become crucial for nematode management. Priestia megaterium YB-3 was originally isolated from rice rhizosphere soil. In vitro experiments with the fermentation supernatant of YB-3 exhibited up to 96.0% mortality of M. graminicola second-stage juveniles (J2) and 39.2% egg hatching inhibition rate at 48 h after treatment. In greenhouse and field experiments, the application of YB-3 significantly suppressed the gall index, final nematode and egg populations compared to the untreated control, while it promoted rice (Oryza sativa) growth. YB-3 showed consistently high biocontrol efficacy against M. graminicola. Moreover, YB-3 remarkably enhanced the expression of defence genes involved in salicylic acid (OsNPR1, OsWRKY45, OsPR1a), jasmonic acid (OsJaMYB, OsAOS2) and ethylene (OsACS1) signalling pathways at different levels. In addition, YB-3 steadily colonized rice rhizosphere soil at levels ranging from 3.54 × 103 to 9.08 × 104 cfu/g soil. High-throughput sequencing analysis showed that the application of YB-3 had no significant influence on the rice rhizosphere microbial community structure, and the taxa enriched in the YB-3 treatment were Acidobacteria, Bacteroidetes and Ascomycota. YB-3 effectively suppressed M. graminicola infection, possibly because it colonized the rice rhizosphere, induced plant resistance and increased the relative abundances of beneficial microorganisms. Priestia megaterium YB-3 could be a promising and safe biological component in the integrated management of M. graminicola.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.