{"title":"Hypothalamic Orexinergic Neurons Projecting to the Mesencephalic Locomotor Region Are Activated by Voluntary Wheel Running Exercise in Rats.","authors":"Emi Narai, Tatsuo Watanabe, Satoshi Koba","doi":"10.33160/yam.2024.02.006","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular changes during exercise are regulated by a motor volitional signal, called central command, which originates in the rostral portions of the brain and simultaneously regulates somatomotor and autonomic nervous systems. Whereas we recently elucidated mesencephalic locomotor region (MLR) neurons projecting to the rostral ventrolateral medulla as a crucial component of the central circuit responsible for transmitting central command signals, upstream circuits that regulate the MLR neurons remain unknown. Orexinergic neurons, which primarily originate from the perifornical area (PeFA) of the hypothalamus and reportedly play roles in eliciting locomotion and elevating sympathetic activity, send axonal projection to the MLR. The knowledge led us to investigate whether central command signals are relayed through orexinergic neurons projecting to the MLR.</p><p><strong>Methods: </strong>We performed anterograde transsynaptic tagging with AAV1 encoding Cre to confirm the presence of MLR neurons postsynaptic to the PeFA in rats. We also conducted retrograde neural tracing with retrograde AAV, combined with immunohistochemical staining, to examine the excitability of MLR-projecting orexinergic neurons in rats that were allowed to freely run on the wheel for 90 min.</p><p><strong>Results: </strong>A significant number of MLR neurons were labeled with Cre, indicating that PeFA neurons make synaptic contacts with MLR neurons. Moreover, immunoreactivities of Fos, a marker of neuronal excitation, were found in many MLR-projecting orexinergic neurons by voluntary wheel running exercise, compared to non-exercising control rats, especially in the intermediate-posterior, rather than anterior, and medial, rather than lateral, portions within the orexinergic neuron-distributing domain.</p><p><strong>Conclusion: </strong>The findings suggest that specifically located orexinergic neurons transmit central command signals onto the MLR for running exercise. Elucidating the role of these MLR-projecting orexinergic neurons in somatomotor control and autonomic cardiovascular control deserves further study to unveil central circuit mechanisms responsible for central command function.</p>","PeriodicalId":23795,"journal":{"name":"Yonago acta medica","volume":"67 1","pages":"52-60"},"PeriodicalIF":0.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10867236/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yonago acta medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.33160/yam.2024.02.006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cardiovascular changes during exercise are regulated by a motor volitional signal, called central command, which originates in the rostral portions of the brain and simultaneously regulates somatomotor and autonomic nervous systems. Whereas we recently elucidated mesencephalic locomotor region (MLR) neurons projecting to the rostral ventrolateral medulla as a crucial component of the central circuit responsible for transmitting central command signals, upstream circuits that regulate the MLR neurons remain unknown. Orexinergic neurons, which primarily originate from the perifornical area (PeFA) of the hypothalamus and reportedly play roles in eliciting locomotion and elevating sympathetic activity, send axonal projection to the MLR. The knowledge led us to investigate whether central command signals are relayed through orexinergic neurons projecting to the MLR.
Methods: We performed anterograde transsynaptic tagging with AAV1 encoding Cre to confirm the presence of MLR neurons postsynaptic to the PeFA in rats. We also conducted retrograde neural tracing with retrograde AAV, combined with immunohistochemical staining, to examine the excitability of MLR-projecting orexinergic neurons in rats that were allowed to freely run on the wheel for 90 min.
Results: A significant number of MLR neurons were labeled with Cre, indicating that PeFA neurons make synaptic contacts with MLR neurons. Moreover, immunoreactivities of Fos, a marker of neuronal excitation, were found in many MLR-projecting orexinergic neurons by voluntary wheel running exercise, compared to non-exercising control rats, especially in the intermediate-posterior, rather than anterior, and medial, rather than lateral, portions within the orexinergic neuron-distributing domain.
Conclusion: The findings suggest that specifically located orexinergic neurons transmit central command signals onto the MLR for running exercise. Elucidating the role of these MLR-projecting orexinergic neurons in somatomotor control and autonomic cardiovascular control deserves further study to unveil central circuit mechanisms responsible for central command function.
期刊介绍:
Yonago Acta Medica (YAM) is an electronic journal specializing in medical sciences, published by Tottori University Medical Press, 86 Nishi-cho, Yonago 683-8503, Japan.
The subject areas cover the following: molecular/cell biology; biochemistry; basic medicine; clinical medicine; veterinary medicine; clinical nutrition and food sciences; medical engineering; nursing sciences; laboratory medicine; clinical psychology; medical education.
Basically, contributors are limited to members of Tottori University and Tottori University Hospital. Researchers outside the above-mentioned university community may also submit papers on the recommendation of a professor, an associate professor, or a junior associate professor at this university community.
Articles are classified into four categories: review articles, original articles, patient reports, and short communications.