Bile salt-enriched vs. non-enriched nanoparticles: comparison of their physicochemical characteristics and release pattern.

IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Marjan Emzhik, Amirsajad Qaribnejad, Azadeh Haeri, Simin Dadashzadeh
{"title":"Bile salt-enriched vs. non-enriched nanoparticles: comparison of their physicochemical characteristics and release pattern.","authors":"Marjan Emzhik, Amirsajad Qaribnejad, Azadeh Haeri, Simin Dadashzadeh","doi":"10.1080/10837450.2024.2320279","DOIUrl":null,"url":null,"abstract":"<p><p>Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"187-211"},"PeriodicalIF":2.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2024.2320279","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Bile salts were first used in the preparation of nanoparticles due to their stabilizing effects. As time went by, they attracted much attention and were increasingly employed in fabricating nanoparticles. It is well accepted that the physicochemical properties of nanoparticles are influential factors in their permeation, distribution, elimination and degree of effectiveness as well as toxicity. The review of articles shows that the use of bile salts in the structure of nanocarriers may cause significant changes in their physicochemical properties. Hence, having information about the effect of bile salts on the properties of nanoparticles could be valuable in the design of optimal carriers. Herein, we review studies in which bile salts were used in preparing liposomes, niosomes and other nanocarriers. Furthermore, the effects of bile salts on entrapment efficiency, particle size, polydispersity index, zeta potential, release profile and stability of nanoparticles are pointed out. Finally, we debate how to take advantage of bile salts potential for preparing desirable nanocarriers.

富含胆盐与不富含胆盐的纳米颗粒:它们的理化特性和释放模式的比较。
胆汁盐因其稳定作用而首次被用于制备纳米粒子。随着时间的推移,它们引起了广泛关注,并越来越多地被用于制备纳米粒子。人们普遍认为,纳米粒子的物理化学特性是影响其渗透、分布、消除、有效性和毒性的因素。文章综述表明,在纳米载体结构中使用胆盐可能会导致其理化性质发生重大变化。因此,了解胆汁盐对纳米颗粒特性的影响对设计最佳载体很有价值。在此,我们回顾了利用胆汁盐制备脂质体、niosomes 和其他纳米载体的研究。此外,我们还指出了胆汁盐对纳米颗粒的夹带效率、粒度、多分散指数、ZETA电位、释放曲线和稳定性的影响。最后,我们讨论了如何利用胆汁盐的潜力制备理想的纳米载体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信