Targeting the hERG1 and β1 integrin complex for cancer treatment.

IF 4.6 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Expert Opinion on Therapeutic Targets Pub Date : 2024-03-01 Epub Date: 2024-02-19 DOI:10.1080/14728222.2024.2318449
Annarosa Arcangeli, Jessica Iorio, Claudia Duranti
{"title":"Targeting the hERG1 and β1 integrin complex for cancer treatment.","authors":"Annarosa Arcangeli, Jessica Iorio, Claudia Duranti","doi":"10.1080/14728222.2024.2318449","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Despite great advances, novel therapeutic targets and strategies are still needed, in particular for some carcinomas in the metastatic stage (breast cancer, colorectal cancer, pancreatic ductal adenocarcinoma and the clear cell renal carcinoma). Ion channels may be considered good cancer biomarkers and targets for antineoplastic therapy. These concepts are particularly relevant considering the hERG1 potassium channel as a novel target for antineoplastic therapy.</p><p><strong>Areas covered: </strong>A great deal of evidence demonstrates that hERG1 is aberrantly expressed in human cancers, in particular in aggressive carcinomas. A relevant cornerstone was the discovery that, in cancer cells, the channel is present in a very peculiar conformation, strictly bound to the β1 subunit of integrin receptors. The hERG1/β1 integrin complex does not occur in the heart. Starting from this evidence, we developed a novel single chain bispecific antibody (scDb-hERG1-β1), which specifically targets the hERG1/β1 integrin complex and exerts antineoplastic effects in preclinical experiments.</p><p><strong>Expert opinion: </strong>Since hERG1 blockade cannot be pursued for antineoplastic therapy due to the severe cardiac toxic effects (ventricular arrhythmias) that many hERG1 blockers exert, different strategies must be identified to specifically target hERG1 in cancer. The targeting of the hERG1/β1 integrin complex through the bispecific antibody scDb-hERG1-β1 can overcome such hindrances.</p>","PeriodicalId":12185,"journal":{"name":"Expert Opinion on Therapeutic Targets","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Opinion on Therapeutic Targets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14728222.2024.2318449","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Despite great advances, novel therapeutic targets and strategies are still needed, in particular for some carcinomas in the metastatic stage (breast cancer, colorectal cancer, pancreatic ductal adenocarcinoma and the clear cell renal carcinoma). Ion channels may be considered good cancer biomarkers and targets for antineoplastic therapy. These concepts are particularly relevant considering the hERG1 potassium channel as a novel target for antineoplastic therapy.

Areas covered: A great deal of evidence demonstrates that hERG1 is aberrantly expressed in human cancers, in particular in aggressive carcinomas. A relevant cornerstone was the discovery that, in cancer cells, the channel is present in a very peculiar conformation, strictly bound to the β1 subunit of integrin receptors. The hERG1/β1 integrin complex does not occur in the heart. Starting from this evidence, we developed a novel single chain bispecific antibody (scDb-hERG1-β1), which specifically targets the hERG1/β1 integrin complex and exerts antineoplastic effects in preclinical experiments.

Expert opinion: Since hERG1 blockade cannot be pursued for antineoplastic therapy due to the severe cardiac toxic effects (ventricular arrhythmias) that many hERG1 blockers exert, different strategies must be identified to specifically target hERG1 in cancer. The targeting of the hERG1/β1 integrin complex through the bispecific antibody scDb-hERG1-β1 can overcome such hindrances.

以 hERG1 和 β1 整合素复合物为靶点治疗癌症。
导言:尽管取得了巨大进步,但仍然需要新的治疗目标和策略,特别是对于一些处于转移阶段的癌症(乳腺癌、结直肠癌、胰腺导管腺癌和透明细胞肾癌)。离子通道可被视为良好的癌症生物标志物和抗肿瘤治疗的目标。考虑到 hERG1 钾通道是抗肿瘤治疗的新靶点,这些概念尤其具有现实意义:大量证据表明,hERG1 在人类癌症中异常表达,尤其是在侵袭性癌中。一个相关的基础发现是,在癌细胞中,该通道以一种非常特殊的构象存在,与整合素受体的β1亚基紧密结合。心脏中不存在 hERG1/β1 整合素复合物。根据这一证据,我们开发了一种新型单链双特异性抗体(scDb-hERG1-β1),它能特异性地靶向 hERG1/β1 整合素复合物,并在临床前实验中发挥抗肿瘤作用:专家观点:由于许多 hERG1 阻断剂会产生严重的心脏毒性作用(室性心律失常),因此不能将 hERG1 阻断用于抗肿瘤治疗,因此必须确定不同的策略来特异性靶向癌症中的 hERG1。通过双特异性抗体 scDb-hERG1-β1 靶向 hERG1/β1 整合素复合物可以克服这些障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
1.70%
发文量
58
审稿时长
3 months
期刊介绍: The journal evaluates molecules, signalling pathways, receptors and other therapeutic targets and their potential as candidates for drug development. Articles in this journal focus on the molecular level and early preclinical studies. Articles should not include clinical information including specific drugs and clinical trials. The Editors welcome: Reviews covering novel disease targets at the molecular level and information on early preclinical studies and their implications for future drug development. Articles should not include clinical information including specific drugs and clinical trials. Original research papers reporting results of target selection and validation studies and basic mechanism of action studies for investigative and marketed drugs. The audience consists of scientists, managers and decision makers in the pharmaceutical industry, academic researchers working in the field of molecular medicine and others closely involved in R&D.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信