Ultralight and Robust Covalent Organic Framework Fiber Aerogels

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-02-19 DOI:10.1002/smll.202311881
Chengming Xiao, Yiyuan Yao, Xin Guo, Junwen Qi, Zhigao Zhu, Yujun Zhou, Yue Yang, Jiansheng Li
{"title":"Ultralight and Robust Covalent Organic Framework Fiber Aerogels","authors":"Chengming Xiao,&nbsp;Yiyuan Yao,&nbsp;Xin Guo,&nbsp;Junwen Qi,&nbsp;Zhigao Zhu,&nbsp;Yujun Zhou,&nbsp;Yue Yang,&nbsp;Jiansheng Li","doi":"10.1002/smll.202311881","DOIUrl":null,"url":null,"abstract":"<p>Shaping covalent organic frameworks (COFs) into macroscopic objects with robust mechanical properties and hierarchically porous structure is of great significance for practical applications but remains formidable and challenging. Herein, a general and scalable protocol is reported to prepare ultralight and robust pure COF fiber aerogels (FAGs), based on the epitaxial growth synergistic assembly (EGSA) strategy. Specifically, intertwined COF nanofibers (100–200 nm) are grown in situ on electrospinning polyacrylonitrile (PAN) microfibers (≈1.7 µm) containing urea-based linkers, followed by PAN removal via solvent extraction to obtain the hollow COF microfibers. The resultant COF FAGs possess ultralow density (14.1–15.5 mg cm<sup>−3</sup>) and hierarchical porosity that features both micro-, meso-, and macropores. Significantly, the unique interconnected structure composed of nanofibers and hollow microfibers endows the COF FAGs with unprecedented mechanical properties, which can fully recover at 50% strain and be compressed for 20 cycles with less than 5% stress degradation. Moreover, the aerogels exhibit excellent capacity for organic solvent absorption (e.g., chloroform uptake of &gt;90 g g<sup>−1</sup>). This study opens new avenues for the design and fabrication of macroscopic COFs with excellent properties.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 32","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202311881","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Shaping covalent organic frameworks (COFs) into macroscopic objects with robust mechanical properties and hierarchically porous structure is of great significance for practical applications but remains formidable and challenging. Herein, a general and scalable protocol is reported to prepare ultralight and robust pure COF fiber aerogels (FAGs), based on the epitaxial growth synergistic assembly (EGSA) strategy. Specifically, intertwined COF nanofibers (100–200 nm) are grown in situ on electrospinning polyacrylonitrile (PAN) microfibers (≈1.7 µm) containing urea-based linkers, followed by PAN removal via solvent extraction to obtain the hollow COF microfibers. The resultant COF FAGs possess ultralow density (14.1–15.5 mg cm−3) and hierarchical porosity that features both micro-, meso-, and macropores. Significantly, the unique interconnected structure composed of nanofibers and hollow microfibers endows the COF FAGs with unprecedented mechanical properties, which can fully recover at 50% strain and be compressed for 20 cycles with less than 5% stress degradation. Moreover, the aerogels exhibit excellent capacity for organic solvent absorption (e.g., chloroform uptake of >90 g g−1). This study opens new avenues for the design and fabrication of macroscopic COFs with excellent properties.

Abstract Image

Abstract Image

超轻、坚固的共价有机框架纤维气凝胶。
将共价有机框架(COFs)塑造成具有坚固机械性能和分层多孔结构的宏观物体对实际应用具有重要意义,但这仍然是一项艰巨而富有挑战性的任务。本文报告了一种基于外延生长协同组装(EGSA)策略制备超轻、坚固的纯 COF 纤维气凝胶(FAGs)的通用、可扩展的方案。具体来说,交织的 COF 纳米纤维(100-200 nm)在含有脲基链接剂的电纺丝聚丙烯腈(PAN)微纤维(≈1.7 µm)上原位生长,然后通过溶剂萃取去除 PAN,得到中空的 COF 微纤维。由此获得的 COF FAG 具有超低密度(14.1-15.5 毫克/厘米-3)和分层孔隙率,其中包括微孔、中孔和大孔。值得注意的是,由纳米纤维和中空微纤维组成的独特互连结构赋予了 COF FAGs 前所未有的机械性能,它可以在 50% 应变时完全恢复,并且在压缩 20 个周期后应力衰减小于 5%。此外,气凝胶还具有出色的有机溶剂吸收能力(例如,氯仿吸收量大于 90 g-1)。这项研究为设计和制造具有优异性能的宏观 COF 开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信